Towards Foundational Verification of
Cyber-physical Systems

(Invited Paper)

Gregory Malecha Daniel Ricketts

Mario M. Alvarez Sorin Lerner

University of California, San Diego
La Jolla, California 92037
Email: {gmalecha,daricket,mmalvarez,lerner} @cs.ucsd.edu

Abstract—The safety-critical aspects of cyber-physical systems
motivate the need for rigorous analysis of these systems. In
the literature this work is often done using idealized models
of systems where the analysis can be carried out using high-
level reasoning techniques such as Lyapunov functions and model
checking. In this paper we present VERIDRONE, a foundational
framework for reasoning about cyber-physical systems at all levels
from high-level models to C code that implements the system.
VERIDRONE is a library within the Coq proof assistant enabling
us to build on its foundational implementation, its interactive
development environments, and its wealth of libraries capturing
interesting theories ranging from real numbers and differential
equations to verified compilers and floating point numbers. These
features make proof assistants in general, and Coq in particular, a
powerful platform for unifying foundational results about safety-
critical systems and ensuring interesting properties at all levels
of the stack.

I. INTRODUCTION

Errors in cyber-physical systems can lead to disastrous
consequences. Classic examples date back to the Therac-25
radiation incidents in 1987 [1] and the Ariane 5 rocket crash
in 1996 [2]. More recently, Toyota’s unintended acceleration
bug was caused by software errors [3[], and certain cars were
found vulnerable to attacks that can take over key parts of the
control software, even allowing attackers to remotely disable
the brakes [4], [S)]. Pacemakers were also found vulnerable to
attacks that can cause deadly consequences for the patient [|6].

The importance of safety for cyber-physical systems has
motivated a lot of work to improve their reliability. Techniques
include model checking [7]—[10], hybrid automata [11], [12],
interactive theorem proving [13]-[17], control theory [18]]—
[22], and domain specific languages [23]]. While these tech-
niques are a marked improvement, previous work in these areas
fall short of a complete solution for at least one of four reasons.
First, many prior tools and techniques are customized to
prove particular classes of properties, for example stability or
safety properties, but cannot provide whole-system verification
results. Second, most tools and techniques are developed in
isolation and the lack of a formal connection between the
individual tools and formalisms makes it difficult to combine
their results in a rigorous way. Third, many prior approaches
work on a model of the cyber-physical system, rather than
the code that implements the model. This leaves open the
possibility of bugs in the implementation. In cyber-physical
systems this discrepancy can be particularly problematic due
both to timing characteristics of real-time systems and discrete

approximations, for example computing with floating point (in
the code) rather than real numbers (in the model). Fourth, the
guarantees provided by prior work often come in the form
of proofs produced by unverified decision procedures such as
SMT solvers, complex math solvers, or custom-built analyzers,
thus still leaving the possibility of bugs in the verification tool
themselves.

In this paper, we present a brief overview of our
VERIDRONE project, which aims to address the above lim-
itations by building a foundational verification infrastructure
for cyber-physical systems in the Coq proof assistant [24].
Coq provides a trustworthy substrate in which to state and
prove interesting properties in a rigorous and foundational
way. We believe that this substrate is the key to solving
the above problems. Using Coq’s rich logic we can express
and verify a wide range of properties across many levels of
abstraction. We can also connect the abstractions used by
different tools making it possible to compose properties estab-
lished by different systems. Further, by leveraging existing Coq
libraries for programming languages and compilers, we can
formally connect high-level models of cyber-physical systems
to the concrete code that implements these models. Finally,
the trustworthiness of all of our results can be traced back to
Coq’s small trusted core providing high assurance of even the
most complex properties.

Outline. We begin with an example showing our use of
VERIDRONE to foundationally verify a simple runtime mon-
itor in the context of quadcopters (Section [I). Using this ex-
ample as a springboard, we then describe four broad directions
that can be explored in the context of foundational verification
of cyber-physical systems:

e Properties: Section describes some interesting
properties that we can formalize in VERIDRONE.

e Proofs: Section |V| describes proof techniques for es-
tablishing these properties in a foundational setting.

e Compilation: Section describes the challenges
associated with compiling cyber-physical controllers
down to a computational platform in a reliable way.

e Uncertainty: Section describes the challenges of
dealing with uncertainty due to sensors, actuators, and
models of the physical world.

All of our work is available on the VERIDRONE website:
http://veridrone.ucsd.edu/

http://veridrone.ucsd.edu/

II. CASE STUDY: RUNTIME MONITORS

We begin by considering building runtime monitors to
enforce safety properties. In cyber-physical systems, runtime
monitors are a lightweight way to gain formal guarantees of
the behavior of unverified control software. These runtime
monitors sit between the control software and the actuators
and ensure that the outputs from the control software are “safe”
with respect to some property, for example staying within a
geo-fence. If the outputs from the unverified control software
might cause the system to violate the property, the monitor
intervenes and adjusts the outputs accordingly.

In VERIDRONE, we specify and verify cyber-physical
systems in the style of Lamport [25] using discrete-time linear
temporal logic. Within this formalism we have defined an
abstraction (called Sys) to specify the transitions of timed
hybrid systems. For example, consider a monitor that enforces
an upper bound on velocity (MAX_VEL). Letting v be the
velocity, a the acceleration, and a,, the acceleration proposed
by the existing control software, this velocity monitor can be
specified as follows:

Def D:=(v+ap* A <MAX_VEL A a' =a,) Va =0.
Def W:i=0v=aAa=0.
Def VelMon := Sysa D W.

Informally, D represents the discrete part of the system (in-
cluding the monitor), W represents the differential dynamics
of the world, and A captures an upper bound on the worst-
case execution time of D. The logic of the discrete transition
states that if the proposed acceleration a, will keep the system
safe until the next time the monitor runs (v + ap * A <
MAX_VEL) it is safe (a’ = a,). Otherwise, the monitor issues
the safe acceleration (a’ = 0). Here, we use prime to denote
the value of a variable after a transition. Finally, WV expresses
the dynamics of velocity in a single dimension. We use Coq
to prove that this is an abstraction of the full dynamics.

It is important to note that the value of a,, (the proposed ac-
celeration) is unconstrained, which represents that we impose
no assumptions on the existing, unverified control software.
This means that the monitor ensures safety regardless of what
the existing control software does.

Using temporal logic we can state and prove properties of
systems such as the velocity monitor. For example, the correct-
ness criterion for the velocity monitor states that if the system
starts in a region (described by I) and evolves according to
the specification of the velocity monitor, then the system will
never exceed the bound on velocity. In VERIDRONE, we state
this property using the following formula (the [J represents
“always”):

I AOvVelMon O (v < MAX_VEL)

Describing both the system and the property within tem-
poral logic makes it easy to reason about both. Temporal
induction lies at the heart of verifying properties such as this
one, and indeed most properties. The following SYS-IND rule
specializes the principle of temporal induction for our Sys
abstraction, allowing us to avoid repeatedly proving some of
the administrative obligations that arise from timing.

PAOLST<AADAOLT <AL P
PATSA A ContOVAT=—-1AT>0) F P’
P ADO(SysaDW) F OpP

SYS-IND

In this definition, 7 represents the timer tracking the amount
of time remaining before the discrete component must run,
and Cont W specifies the continuous transition. We use P’
to denote the formula P with all variables replaced with their
primed version.

By working in Coq’s expressive logic, we are able to prove
this (and other) specialized reasoning principles foundationally.
Crucially, we obtain the benefits of customizable domain-
specific reasoning without jeopardizing soundness.

III. FOUNDATIONAL PROOF ASSISTANTS

Coq is an interactive proof assistant that allows users
to write specifications, programs, and proofs in a rich logic
based on type theory. While the use of type theory is not
essential, the richness of the logic is crucial because it makes it
natural to express interesting properties, e.g. stability, without
relying on complex encodings. Whereas other systems might
define abstractions such as temporal logic or hybrid systems
axiomatically (i.e.: by stating axioms that are assumed to
hold), in VERIDRONE we define these abstractions from first
principles in Coq, and then prove theorems about them (rather
than assuming they hold). Doing the verification from first
principles in this way provides two benefits. First, it gives our
results a solid foundation in Coq’s own logic ensuring that
our reasoning is sound. This comes for free when working in
Coq since all results are justified by independently checkable
proof witnesses. Second, building within Coq allows us to
use theories developed in it, for example, the theory of real
arithmetic or the semantics of C programs.

To see what we mean, let us dive into the definition of the
Sys abstraction that our velocity monitor uses.

Def Sysa D W :=
(DAOLST <A)vcont WAT=—-1AT>0).

In this (stylized) Coq definition, we state explicitly that a
Sysa transition is either a transition of the discrete action (D)
or a transition of the continuous dynamics (JV). The formula
W is a predicate over the variables of a system and their
derivative, allowing one to specify constraints on the evolution
that mention the time derivatives of the state of the system.
The extra 7 variable encodes a stop-watch that is re-initialized
when the discrete program runs and counts down in lockstep
with time during the continuous transition. The final assertion
in the Cont clause ensures that the value of the stop-watch
never goes negative ensuring that the discrete transition runs
at least once every A time.

Explicitly defining abstractions, such as Sys, allows us to
prove the rules about them as Coq theorems. Our formalism,
however, does not bottom out at Sys. We defined Cont
explicitly in Coq leveraging Coq’s theory of analysis. Doing
this allowed us to foundationally prove, rather than axiomatize,
Platzer’s differential induction proof technique [26]] for reason-
ing about continuous transitions. To be concrete, the less-than
case of the property is the following:

W Ea<b
a<b A Cont(W) F (a<b)

DIFF-IND-<

This formalizes the idea that a <b is preserved by a contin-
uous transition W if W ensures that the derivative of a is
bounded by the derivative of b.

While this proof had previously been done on paper, ours
is the first fully foundational version of this proof that we are
aware of and it connects directly to our definitions; there is no
gap where errors could have crept in. This is important because
several of our early adaptations of differential induction were
unsound for subtle reasons and it was only while completing
the proof that we discovered (and fixed) the problems.

IV. PROPERTIES

The richness of our formalism makes it possible to apply
VERIDRONE to reason about a range of interesting properties.

Monitor Composition. Beyond the individual monitors that
we presented in Section [II| we also developed a theory of
monitor composition [27] by building on Coq’s higher-order
logic. We developed (and proved) theorems that allow us
to perform spatial transformations, e.g. enforcing a lower-
bound on velocity instead of an upper bound, and to combine
individual monitors in both a conjunctive and disjunctive style.

Using spatial transformation and conjunctive composition
allowed us to build a monitor that guarantees that the quad-
copter stays within a cube by (mostly) composing proofs of
our simple monitors. Carrying this proof all the way down to
the physical dynamics of the quadcopter (based on roll, pitch,
yaw, and total thrust) required that we reason about highly
non-linear equations including trigonometric functions. Our
reasoning even includes enforcing a “small angle constraint”
ensuring that the quadcopter remains roughly vertical where
the dynamics are more predictable. Doing this sort of reasoning
within completely automated tools would likely be difficult
since automated solvers struggle with non-linear dynamics.
Using an interactive proof assistant makes it tractable.

On top of the development of the cube, our composition
theorems make it trivial to enforce any “pixelized” shape. For
example, we can ensure that the quadcopter does not come
within 10 feet of the pilot despite being able to fly over and
around the pilot.

Our composition theorems crucially rely on Coq’s higher-
order logic. While the base monitors took longer to develop
than they might in another system, the ability to foundationally
compose these individual components turns them into building
blocks for larger verification efforts.

Stability & Robustness. We have also explored verification of
stability [28] and robustness properties [29] in VERIDRONE.
The expressiveness of our temporal logic makes it relatively
straightforward to state both properties. For example, we can
state stability with the following definition:

Def LyapunovStable x :=
Ixoa,a>0Ax=x0AO(x| < |xo] * a).

Stability is a trace predicate, describing the boundedness of
the value x over time. While proving stability manually can
be quite painful, Coq’s rich logic makes it possible to formalize
(and verify) the theory of Lyapunov functions and use them to
foundationally verify stability of our models. This technique
drastically simplifies proving stability for our systems.

Robustness is an interesting property that essentially allows
us to “blame violations of properties on disturbances.” For

example, it allows us to formally prove that any violation of
the boundary can be directly attributed to random forces such
as wind. Tackling this problem presented interesting challenges
because it required that our models represent non-deterministic
forces that we did not model in earlier developments.

Our work on robustness up until this point has just
scratched the surface, and we believe that a promising future
direction is to understand how robustness can allow us to ver-
tically compose systems. For example, can we use robustness
to compose a safety monitor that outputs attitudes with an
attitude controller?

High-level properties. Beyond classic control theory prop-
erties, there are higher-level properties that one might be
interested in proving, such as: collision avoidance; following
a path; and always having enough battery to go back home.
Even more aggressively, one might also want to look at
proving correctness properties about application-specific con-
trollers, for example controllers that deliver packages, survey
geographic areas, film sporting events, or help with rescue
operations. Solving these problems requires both developing
formal definitions of correctness and building techniques for
reasoning about them. Crucially, working in Coq’s expressive
logic will not limit the types of properties we can express or
the reasoning techniques we employ.

V. PROOF TECHNIQUES

One of the perceived drawbacks of working in such an
expressive logic is that verification often requires manual
intervention. This may initially give researchers (and practi-
tioners) pause in adopting proof assistants given the wealth of
more automated techniques such as hybrid model checking.
However, even in this comparison, proof assistants provide
some very significant benefits. For example, the richness of
Coq’s logic makes it possible to implement automated tools
and verify them. Previous work has shown how to develop
and verify model checkers within proof assistants [30]]. While
these formalisms rely on automata-based formalisms, we can
formalize the connection to our logic-based formalism founda-
tionally in Coq. This connection would allow us to take formal
results (justified by automated tools) and compose them with
results that are beyond the scope of fully automated tools in a
completely foundational way.

Because of the interaction with the physics of the real
world, reasoning about cyber-physical systems often boils
down to real-valued mathematics. While Coq provides some
automation for dealing with real arithmetic in a fully founda-
tional way [31]], Coq’s procedures can sometimes be slow or
incomplete. However, when complete rigor is not necessary,
we can still benefit from state-of-the-are solvers that are more
efficient and complete by integrating them into Coq, albeit in
an unverified way. In particular, we have developed a Coq
plugin [32] that allows us to interface with state-of-the-art
SMT solvers including Z3 [33]], CVC [34], and Polya [35].
Although properties verified by the plugin are not foundational
— thus leaving a gap in the otherwise fully foundational
verification — current efforts are underway by other groups
to build foundational proofs automatically [36], [37]]. In the
meantime relying on these tools is not uncommon, for example
KeYmaera [38]] and many other tools [39]], [40] trust the results
of Z3.

VI. VERIFIED COMPILATION

By integrating with language formalisms, the VERIDRONE
framework can be used to verify properties on the actual code
that runs on the system. In practice, it is common to rely on
unverified translations or “manual inspection” to relate code
and its model. However, this kind of translation is exactly
the source of problems such as the Patriot Missile floating
point bug where 28 American soldiers died due the software’s
incorrect accounting of floating point inaccuracies [41]].

To close this gap we have begun developing tools to
connect our models, defined using real numbers and temporal
logic, to more traditional programs. We have developed an
embedding operator that allows us write imperative code
directly within our temporal logic and prove properties of the
resulting system.

if (v + ap*A<MAX_VEL)
Sysa (Embedc{ a = ap; })W
else a = 0;
F O(v < MAX_VEL)

Here, EmbedC embeds a C-like program into our temporal
logic. The definition of EmbedC ensures that the only actions
allowed are the ones that correspond to valid executions of
the C program. While we have so far only explored C, our
embedding process is language-agnostic, allowing us to embed
a variety of languages into our hybrid system formalism.

Crucially, the EmbedC construct allows us to embed the
C code from the implementation into our logic, and thus
reason about it formally to show that the low-level C code is
equivalent property-wise to the high-level model over which
our previous properties were proved. To reason about the C-
level code, we can leverage a range of verification frameworks
such as the Verified Software Toolchain [42] to assist with
language-level abstractions. Connecting the model to the code
in this way forces us not only to reason about the connection
between real and floating point numbers, but also to prove that
the C programs are crash-free.

Integrating with the Rest of the Stack. Once we have used
the above embedding mechanism to connect our properties
from the high-level model to the C-level implementation, we
can then push these properties all the way down to machine
code by leveraging verification results such as the CompCert
verified C compiler [43]]. Finally, we can connect our verified
code to verified systems software such as the CertiKOS [44]
verified hypervisor in a completely foundational way.

Compiling Down to Hardware. Even more aggressively, one
might also consider compiling the high-level model directly to
hardware in a fully verified way. Compiling down to Verilog
has several benefits. First, it would allow us to more accurately
reason about timing of the controller, which is an important
consideration when interacting with the physical world. For
example, we would be able to prove strong bounds on the
timing of hardware-generated low-level controllers, while still
allowing a higher-level controller to run complex and time-
consuming algorithms, such as object recognition, on a sepa-
rate general purpose processor. Second, compiling controllers
all the way down to hardware would make the controllers more
resilient to malicious attacks. For example, certain attacks
against quadcopters use vulnerabilities in the software stack,
such as the communication software, to take control of the

software that runs on the quadcopter. By generating specialized
hardware, we would make such attacks much harder to mount,
which in certain high-assurance scenarios might be beneficial.

VII. SENSORS & UNCERTAINTY

All control software running on a cyber-physical system
relies on knowledge of the system’s state (e.g. current position,
attitude, etc). Up until now, we have ignored the uncertainty
inherent in this knowledge. Moving to an uncertain world
raises two interesting directions for investigation.

First, we would like to formally characterize how our
existing systems behave in the presence of uncertainty. For
example, building a probabilistic analogue of monitor safety
will allow us to formally quantify how the degree of state
uncertainty affects the properties that our systems guarantee.

Second, modern cyber-physical systems rely on sophisti-
cated sensor fusion algorithms to combine the knowledge from
multiple sensors to estimate the current state. For example,
a quadcopter may combine GPS input with data from an
accelerometer to tolerate variations in sensed values that might
occur due to GPS inaccuracy. We would like to formally reason
about the uncertainty in the estimates produced by sensor
fusion. Combining these results with the previous results would
give us a probabilistic guarantee about the entire system,
consisting of both sensor fusion and control software.

Addressing these questions will require adapting our LTL
model to support probability. Coq’s expressive logic provides
a powerful framework for exploring the tradeoffs between
existing probabilistic temporal logics [45] and gives us the
flexibility to develop new ones if necessary.

VIII. CONCLUSIONS

VERIDRONE is a foundational framework for research in
and verification of cyber-physical systems. Throughout this
paper we demonstrated its core principles. Foundational proofs
in a general-purpose formalism give a high level of assurance
but also make it possible to extend the model to support
verification ranging from straightforward safety properties in
simple models to robustness and probabilistic properties in
more nuanced models with disturbances. Connecting with
previous developments such as CompCert and Flocq allows
us to connect our high-level models down to the machine
code that runs on the quadcopter and leverage purely digital
results such as cryptography [46| and verified systems software
to gain deeper guarantees. In the future, we believe that
foundational frameworks such as VERIDRONE will provide a
unifying foundation for establishing deep end-to-end properties
of the cyber-physicals systems that we bet our lives on.

REFERENCES

[1] N. G. Leveson and C. S. Turner, “An investigation of the therac-25
accidents,” Computer, vol. 26, no. 7, pp. 18-41, 1993.

[2] J.-L. Lions et al., “Ariane 5 flight 501 failure,” 1996.
[3] S. Kane, E. Liberman, T. DiViesti, and F. Click, “Toyota sudden
unintended acceleration,” Safety Research & Strategies, 2010.

[4] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage, “Ex-
perimental security analysis of a modern automobile,” in Proceedings
of IEEE Security and Privacy (“Oakland”) 2010. 1EEE Computer
Society, May 2010, pp. 447-62.

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive
experimental analyses of automotive attack surfaces,” in Proceedings of
USENIX Security 2011. USENIX, Aug. 2011, pp. 77-92.

D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. Defend,
W. Morgan, K. Fu, T. Kohno, and W. H. Maisel, “Pacemakers and im-
plantable cardiac defibrillators: Software radio attacks and zero-power
defenses,” in Security and Privacy, 2008. SP 2008. IEEE Symposium
on. 1EEE, 2008, pp. 129-142.

T. A. Henzinger, P. Ho, and H. Wong-Toi, “HYTECH: A model
checker for hybrid systems,” in CAV ’97, 1997. [Online]. Available:
http://dx.doi.org/10.1007/3-540-63166-6_48

G. Frehse, “PHAVer: algorithmic verification of hybrid systems past
HyTech,” STTT, vol. 10, no. 3, pp. 263-279, 2008. [Online]. Available:
http://dx.do1.0org/10.1007/s10009-007-0062-x

E. M. Clarke, A. Fehnker, Z. Han, B. H. Krogh, J. Ouaknine,
O. Stursberg, and M. Theobald, “Abstraction and counterexample-
guided refinement in model checking of hybrid systems,” Int. J. Found.
Comput. Sci., vol. 14, no. 4, pp. 583-604, 2003. [Online]. Available:
http://dx.doi.org/10.1142/S012905410300190X

R. Alur, T. Dang, and F. Ivancic, “Counter-example guided predicate
abstraction of hybrid systems,” in TACAS ’03, 2003, pp. 208-223.
[Online]. Available: http://dx.doi.org/10.1007/3-540-36577-X_15

T. A. Henzinger, “The theory of hybrid automata,” in LICS ’96, 1996,
pp. 278-292. [Online]. Available: http://dx.doi.org/10.1109/LICS.1996.
561342

T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s
decidable about hybrid automata?” J. Comput. Syst. Sci., vol. 57, no. 1,
pp. 94-124, 1998. [Online]. Available: http://dx.doi.org/10.1006/jcss.
1998.1581

P. Collins, M. Niqui, and N. Revol, “A taylor function calculus for
hybrid system analysis: Validation in coq (extended abstract),” 2010.

H. Geuvers, A. Koprowski, D. Synek, and E. van der Weegen,
“Automated machine-checked hybrid system safety proofs,” in ITP
’10, 2010, pp. 259-274. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-14052-5_19

O. Tveretina, “Towards the Safety Verification of Real-Time Systems
with the Coq Proof Assistant,” JAMRIS, vol. 3, pp. 30-32, 2009.

E. Abraham-Mumm, U. Hannemann, and M. Steffen, “Verification of
hybrid systems: formalization and proof rules in pvs,” in ECCS 01,
2001, pp. 48-57.

N. Vlker, “Towards a HOL Framework for the Deductive Analysis of
Hybrid Control Systems,” 2000.

D. Liberzon, Switching in systems and control.
Business Media, 2003.

S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems
using barrier certificates,” in Hybrid Systems: Computation and Control.
Springer, 2004, pp. 477-492.

J. P. Hespanha, “Tutorial on supervisory control,” in Lecture Notes for
the workshop Control using Logic and Switching for the 40th Conf. on
Decision and Contr.,, Orlando, Florida, 2001.

H. Lin and P. J. Antsaklis, “Stability and stabilizability of switched
linear systems: a survey of recent results,” Automatic control, IEEE
Transactions on, vol. 54, no. 2, pp. 308-322, 2009.

C. J. Tomlin, J. Lygeros, and S. S. Sastry, “A game theoretic approach to
controller design for hybrid systems,” Proceedings of the IEEE, vol. 88,
no. 7, pp. 949-970, 2000.

P. C. Hickey, L. Pike, T. Elliott, J. Bielman, and J. Launchbury,
“Building Embedded Systems with Embedded DSLs,” in ICFP’I4.
New York, NY, USA: ACM, 2014, pp. 3-9. [Online]. Available:
http://dot.acm.org/10.1145/2628136.2628146

Coq Development Team, “The Coq proof assistant reference manual,
version 8.5,” 2016. [Online]. Available: http://coq.inria.fr/distrib/V8.5/
refman/

Springer Science &

L. Lamport, “Hybrid systems in TLA+,” in Hybrid Systems, ser. Lecture
Notes in Computer Science, R. Grossman, A. Nerode, A. Ravn, and
H. Rischel, Eds. Springer Berlin Heidelberg, 1993, vol. 736, pp. 77—
102. [Online]. Available: http://dx.doi.org/10.1007/3-540-57318-6_25

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

A. Platzer, Logical analysis of hybrid systems: proving theorems for
complex dynamics. Springer Publishing Company, Incorporated, 2010.

Daniel Ricketts and Gregory Malecha and Sorin Lerner, “Modular
Reasoning about Cyber-physical Systems,” 2016.

Matthew Chan and Daniel Ricketts and Sorin Lerner and Gregory
Malecha, “Formal Verification of Stability Properties of Cyber-physical
Systems,” 2016. [Online]. Available: http://veridrone.ucsd.edu/papers/,
coqpl2016.pdf]

Daniel Ricketts and Gregory Malecha and Sorin Lerner, “Verifying
Robustness of Cyber-Physical Systems,” 2016.

H. Amjad, “Combining model checking and theorem proving,” Tech.
Rep. 601, September 2004.

F. Besson, “Fast reflexive arithmetic tactics the linear case and
beyond,” in TYPES, ser. LNCS. Springer Berlin Heidelberg, 2007,
vol. 4502, pp. 48-62. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-74464-1_4

G. Malecha, “Coq SMT Check,” 2016. [Online]. Available: https:
//github.com/gmalecha/coq-smt-check

L. De Moura and N. Bjgrner, “Z3: An Efficient SMT Solver,” ser.
TACAS’08/ETAPS’08. Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 337-340. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1792734.1792766

C. Barrett and C. Tinelli, “CVC3,)” in CAV. Springer Berlin
/ Heidelberg, 2007, vol. 4590, pp. 298-302. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-73368-3_34

Jeremy Avigad and Robert Y. Lewis and Cody Roux, “A Heuristic
Prover for Real Inequalities,” 2016. [Online]. Available: http:
/Iwww.andrew.cmu.edu/user/avigad/Papers/polya.pdf

F. Besson, P-E. Cornilleau, and D. Pichardie, CPP’l1. Springer
Berlin Heidelberg, 2011, ch. Modular SMT Proofs for Fast
Reflexive Checking Inside Coq, pp. 151-166. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-25379-9_13

M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner,
CPP’11. Springer Berlin Heidelberg, 2011, ch. A Modular Integration
of SAT/SMT Solvers to Coq through Proof Witnesses, pp. 135-150.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-25379-9_12

Andre Platzer, “KeYmaera: A Hybrid Theorem Prover for Hybrid
Systems.” [Online]. Available: http://symbolaris.com/info/KeYmaera.
html

M. Barnett, B.-Y. Chang, R. DeLine, B. Jacobs, and K. Leino,
“Boogie: A modular reusable verifier for object-oriented programs,” in
Formal Methods for Components and Objects, ser. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2006, vol. 4111, pp.
364-387. [Online]. Available: http://dx.doi.org/10.1007/11804192_17

K. Leino and P. Rmmer, “A polymorphic intermediate verification
language: Design and logical encoding,” in Tools and Algorithms for the
Construction and Analysis of Systems, ser. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2010, vol. 6015, pp. 312-327.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-12002-2_26

“Patriot Missile Software Problem,” |http://sydney.edu.au/engineering/it/
~alum/patriot_bug.html, accessed: 2015-04-30.

Andrew W. Appel and Robert Dockins and Aquinas Hobor and Josiah
Dodds and Xavier Leroy and Sandrine Blazy and Gordon Stewart and
Lennart Beringer, Program Logics for Certified Compilers, April 2014.

X. Leroy, “Formal verification of a realistic compiler,” Communications
of the ACM, vol. 52, no. 7, pp. 107-115, 2009. [Online]. Available:
http://gallium.inria.fr/~xleroy/publi/compcert- CACM.pdf

L. Gu, A. Vaynberg, B. Ford, Z. Shao, and D. Costanzo, “Certikos:
A certified kernel for secure cloud computing,” in Proceedings of
the Second Asia-Pacific Workshop on Systems, ser. APSys *11. New
York, NY, USA: ACM, 2011, pp. 3:1-3:5. [Online]. Available:
http://doi.acm.org/10.1145/2103799.2103803

H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp. 512-535,
1994. [Online]. Available: http://dx.doi.org/10.1007/BF01211866

A. W. Appel, “Verification of a cryptographic primitive: Sha-256,”
ACM Trans. Program. Lang. Syst., vol. 37, no. 2, pp. 7:1-7:31, Apr.
2015. [Online]. Available: http://doi.acm.org/10.1145/2701415

http://dx.doi.org/10.1007/3-540-63166-6_48
http://dx.doi.org/10.1007/s10009-007-0062-x
http://dx.doi.org/10.1142/S012905410300190X
http://dx.doi.org/10.1007/3-540-36577-X_15
http://dx.doi.org/10.1109/LICS.1996.561342
http://dx.doi.org/10.1109/LICS.1996.561342
http://dx.doi.org/10.1006/jcss.1998.1581
http://dx.doi.org/10.1006/jcss.1998.1581
http://dx.doi.org/10.1007/978-3-642-14052-5_19
http://dx.doi.org/10.1007/978-3-642-14052-5_19
http://doi.acm.org/10.1145/2628136.2628146
http://coq.inria.fr/distrib/V8.5/refman/
http://coq.inria.fr/distrib/V8.5/refman/
http://dx.doi.org/10.1007/3-540-57318-6_25
http://veridrone.ucsd.edu/papers/coqpl2016.pdf
http://veridrone.ucsd.edu/papers/coqpl2016.pdf
http://dx.doi.org/10.1007/978-3-540-74464-1_4
http://dx.doi.org/10.1007/978-3-540-74464-1_4
https://github.com/gmalecha/coq-smt-check
https://github.com/gmalecha/coq-smt-check
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dx.doi.org/10.1007/978-3-540-73368-3_34
http://www.andrew.cmu.edu/user/avigad/Papers/polya.pdf
http://www.andrew.cmu.edu/user/avigad/Papers/polya.pdf
http://dx.doi.org/10.1007/978-3-642-25379-9_13
http://dx.doi.org/10.1007/978-3-642-25379-9_12
http://symbolaris.com/info/KeYmaera.html
http://symbolaris.com/info/KeYmaera.html
http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1007/978-3-642-12002-2_26
http://sydney.edu.au/engineering/it/~alum/patriot_bug.html
http://sydney.edu.au/engineering/it/~alum/patriot_bug.html
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf
http://doi.acm.org/10.1145/2103799.2103803
http://dx.doi.org/10.1007/BF01211866
http://doi.acm.org/10.1145/2701415

