
CSE 231- Project 4

Rajat Grewal

Dataflow Analysis

1. MOD Analysis + MPT

2. ConstantPropAnalysis

Which pass to use?
● We need to implement an inter-procedural analysis and therefore can’t use a normal

Function pass

● A module pass might work but then it becomes difficult to track the caller-callee relations

within the pass

● LLVM Description for CallGraphSCCPass - These passes are inherently
interprocedural…

● A good resource to get more info about CallGraphSCCPass - Link

● CallGraphSCCPass does a bottom-up traversal on the CallGraph, i.e., it starts from the
leaf nodes.

● The callee info would have been calculated before we go to the caller

https://llvm.org/doxygen/CallGraphSCCPass_8h_source.html

MPT

● MPT stands for May-point-to

● A global set of variables that may be pointed to by some other variable

● Don’t need to worry about the variable doing the actual pointing. This is how this MPT

differs from you May-Point-To Analysis in Part 3 of the project

● Don’t discriminate between global or local variables while creating the MPT set

● MPT can be constructed within the doInitialization method of your Pass. All it takes is one

pass through the CallGraph

Data Structure

Value type can be converted to Instruction, GlobalVariable, Constant, Operator….. (dyn_cast)

Take a look at the class diagram for Value here

https://llvm.org/doxygen/classllvm_1_1Value.html

When to add elements to MPT set?
1. global1 = &global2 MPT -> {global2}

Hint - Get a list of all global variables in the CallGraph. How do you get the value pointed by

global1?

2. X = &Y MPT ->{Y} //X and Y don’t necessarily need to be global

Hint - Such instruction translate to store in the .ll file.

3. function(...&operand(s)...) and return &operand MPT ->{operand(s)}

Hint - Such instructions translate to Call and Ret respectively in the .ll file.

Use& type

MOD analysis
● In simpler terms - Store the variables that might be modified in a function

● We just focus on Global variables here as suggested by the Data Structure(unlike MPT)

● MPT was a global set for all functions. This will be on a per functions basis

● We will calculate this in the doInitialization method and the runOnSCC method of the pass

● Ideally, we would have required a worklist algorithm to reach a fixed point but runOnSCC

helps us avoid that

Data Structure

Note that the Set only takes GlobalVariable*

No need to use the DataFlowAnalysis written in 231DFA.h for MOD

When to populate MOD?
This should happen on a per function basis within doInitialization. Suppose for any given function

F, we encounter the following

1. global_var = ____ MOD[&F] ->{global_var} //This global variable might be modified

Hint - check if the PointerOperand of a store instruction is global or not?

2. *var = _____ MOD[&F] ->{global_subset(MPT)} // var can modify anything inside MPT

Hint - Such instructions translate to a combination of store and load

This is not at all precise but serves our purpose for this assignment.

PS - Make sure you have the complete MPT set before assigning it to the MOD of a given function

What about modification caused by Callee’s?
● This is what is being referred to as CMOD in the write-up.

● runOnSCC(CallGraph &SCC) comes to our rescue here

● Steps -

○ Get CallGraphNode *caller_node from SCC

○ Get Function* caller from the caller_node (using getFunction())

○ Get CallGraphNode *callee_node from the *caller_node

○ Get Function* callee from the callee_node (using getFunction())

○ Union Callee’s MOD with the Caller’s MOD (set of GlobalVariable*)

What about when we have a loop within the caller and callee?

https://llvm.org/doxygen/classllvm_1_1CallGraphNode.html

Done with MOD and MPT

This marks the end of MOD and MPT calculations for our analysis

Why did we calculate them? Because we’ll use them in the flow functions for the ConstantPropAnalysis

ConstantPropAnalysis

● This is the place where you would make use of your DataFlowAnalysis written in 231DFA.h

● You’ll write a ConstPropInfo class that inherits from Info. This implies that you’ll implement at

least the following functions -
○ print
○ equals
○ Join
○ Any additional getter or setters you need

● You’ll implement the ConstPropAnalysis that inherits from DataFlowAnalysis. This implies you’ll

need to implement your flowfunction method that gets called again and again in your worklist

algorithm written in 231DFA.h

● It is a forward analysis

Data Structures

Your ConstPropInfo class will make use of a instance of ConstPropContent to keep track of the

information related to your analysis

ConstState is used to replicate the affect of a finite lattice (Top means not constant)

Running the Analysis

● All analyses(PA1-PA3) till now have been started in runOnFunction()

● For ConstantProp, we will run it in the doFinalization method because you have access to all

the functions within the CallGraph

Flow function example

Binary operator (Unary, CMP, Select are very similar to this)

A = x + y ;

4 possibilities - x -> {constant, not constant}, y->{constant, not constant}

A = 6 + 9;

A = x + 6;

A = 9 + y;

A = x + y;

Demo?

Assume you have the required getter and setters

Another flow function - Call

