Pointer analysis
Pointer Analysis

• Outline:
 – What is pointer analysis
 – Intraprocedural pointer analysis
 – Interprocedural pointer analysis
 • Andersen and Steensgaard
Pointer and Alias Analysis

- **Aliases**: two expressions that denote the same memory location.

- **Aliases are introduced by**:
 - pointers
 - call-by-reference
 - array indexing
 - C unions
Useful for what?

- Improve the precision of analyses that require knowing what is modified or referenced (e.g., const prop, CSE ...)
- Eliminate redundant loads/stores and dead stores.

\[
\begin{align*}
 & x := *p; \\
 & \ldots \\
 & y := *p; // replace with y := x? \\
 & \text{\texttt{\#x := \ldots;}} \\
 & \text{\texttt{\#is \texttt{\#x} dead?}} \\
\end{align*}
\]

- Parallelization of code
 - can recursive calls to quick_sort be run in parallel? Yes, provided that they reference distinct regions of the array.

- Identify objects to be tracked in error detection tools

\[
\begin{align*}
 & \text{\texttt{x.lock();}} \\
 & \ldots \\
 & y.unlock(); // same object as x? \\
\end{align*}
\]
Kinds of alias information

• Points-to information (must or may versions)
 – at program point, compute a set of pairs of the form p ! x, where p points to x.
 – can represent this information in a **points-to graph**

• Alias pairs
 – at each program point, compute the set of all pairs (e₁, e₂) where e₁ and e₂ must/may reference the same memory.

• Storage shape analysis
 – at each program point, compute an abstract description of the pointer structure.
Intraprocedural Points-to Analysis

- Want to compute may-points-to information

- Lattice:

 \[D = 2 \]

 \[U = U \]

 \[\leq = \leq \]

 \[\bot = \emptyset \]

 \[T = \{ x \rightarrow y \mid x \in V_{an}, y \in V_{an} \} \]
Flow functions

\[\text{Flow function: } F_x := k(\text{in}) = \]

\[\text{Flow function: } F_x := a + b(\text{in}) = \]
Flow functions

\[
\begin{align*}
x &:= y \\
in &
\end{align*}
\]

\[
\begin{align*}
F_x &:= y \text{(in)} = \\
\text{out} &
\end{align*}
\]

\[
\begin{align*}
x &:= \&y \\
\text{in} &
\end{align*}
\]

\[
\begin{align*}
F_x &:= \&y \text{(in)} = \\
\text{out} &
\end{align*}
\]
Flow functions

\[x := *y \]

\[F_{x := y}(\text{in}) = \]

\[*x := y \]

\[F_{*x := y}(\text{in}) = \]
Intraprocedural Points-to Analysis

- Flow functions:

\[
\begin{align*}
\text{kill}(x) & = \bigcup_{v \in \text{Vars}} \{(x, v)\} \\
F_{x:=k}(S) & = S - \text{kill}(x) \\
F_{x:=a+b}(S) & = S - \text{kill}(x) \\
F_{x:=y}(S) & = S - \text{kill}(x) \cup \{(x, v) \mid (y, v) \in S\} \\
F_{x:=\&y}(S) & = S - \text{kill}(x) \cup \{(x, y)\} \\
F_{x:=*y}(S) & = S - \text{kill}(x) \cup \{(x, v) \mid \exists t \in \text{Vars}.[(y, t) \in S \land (t, v) \in S]\} \\
F_{x:=y}(S) & = \text{let } V := \{v \mid (x, v) \in S\} \text{ in} \\
& \quad S - (\text{if } V = \{v\} \text{ then } \text{kill}(v) \text{ else } \emptyset) \\
& \quad \cup \{(v, t) \mid v \in V \land (y, t) \in S\}
\end{align*}
\]
Pointers to dynamically-allocated memory

- Handle statements of the form: \(x := \text{new } T \)
- One idea: generate a new variable each time the new statement is analyzed to stand for the new location:

\[
F_{x:=\text{new } T}(S) = S - \text{kill}(x) \cup \{(x, \text{newvar()})\}
\]
Example

```
l := new Cons
p := l
t := new Cons
*p := t
p := t
```
Example solved

1 := new Cons

p := l

t := new Cons

*p := t

p := t

*
What went wrong?

• Lattice infinitely tall!
• We were essentially running the program
• Instead, we need to summarize the infinitely many allocated objects in a finite way
• **New Idea**: introduce summary nodes, which will stand for an entire set of allocated objects.
What went wrong?

- Example: For each new statement with label L, introduce a summary node loc_L, which stands for the memory allocated by statement L.

$$F_L: x := \text{new } T(S) = S - \text{kill}(x) \cup \{(x, \text{loc}_L)\}$$

- Summary nodes can use other criterion for merging.
Example revisited

S1: \(l := \text{new Cons} \)

\[p := l \]

S2: \(t := \text{new Cons} \)

\[*p := t \]

\[p := t \]
Example revisited & solved

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t
Array aliasing, and pointers to arrays

- Array indexing can cause aliasing:
 - \(a[i] \) aliases \(b[j] \) if:
 - \(a \) aliases \(b \) and \(i = j \)
 - \(a \) and \(b \) overlap, and \(i = j + k \), where \(k \) is the amount of overlap.

- Can have pointers to elements of an array
 - \(p := \&a[i]; \ldots; p++; \)

- How can arrays be modeled?
 - Could treat the whole array as one location.
 - Could try to reason about the array index expressions: array dependence analysis.
Fields

• Can summarize fields using per field summary
 – for each field F, keep a points-to node called F that summarizes all possible values that can ever be stored in F

• Can also use allocation sites
 – for each field F, and each allocation site S, keep a points-to node called (F, S) that summarizes all possible values that can ever be stored in the field F of objects allocated at site S.
Summary

• We just saw:
 – intraprocedural points-to analysis
 – handling dynamically allocated memory
 – handling pointers to arrays

• But, intraprocedural pointer analysis is not enough.
 – Sharing data structures across multiple procedures is one the big benefits of pointers: instead of passing the whole data structures around, just pass pointers to them (eg C pass by reference).
 – So pointers end up pointing to structures shared across procedures.
 – If you don’t do an interproc analysis, you’ll have to make conservative assumptions functions entries and function calls.
Conservative approximation on entry

• Say we don’t have interprocedural pointer analysis.
• What should the information be at the input of the following procedure:

```c
global g;
void p(x,y) {
    ...
}
```
Conservative approximation on entry

• Here are a few solutions:

```c
global g;
void p(x,y) {
  ...
}
```

• They are all very conservative!

• We can try to do better.
Interprocedural pointer analysis

• Main difficulty in performing interprocedural pointer analysis is scaling

• A single points-to-graph can be $O(\text{size of program})$
Example revisited

- Cost:
 - space: store one fact at each prog point
 - time: iteration

S1: \(l := \text{new Cons} \)

\[
\begin{array}{c}
p := l \\
* p := t \\
p := t
\end{array}
\]

Iter 1

\[
\begin{array}{c}
l \\
p \Rightarrow S1
\end{array}
\]

Iter 2

\[
\begin{array}{c}
 p \\
* p := t \\
* p := t
\end{array}
\]

Iter 3

\[
\begin{array}{c}
l \\
S1 \Rightarrow S2
\end{array}
\]
New idea: store one dataflow fact

- Store one dataflow fact for the whole program
- Each statement updates this one dataflow fact
 - use the previous flow functions, but now they take the whole program dataflow fact, and return an updated version of it.
- Process each statement once, ignoring the order of the statements
- This is called a flow-insensitive analysis.
Flow insensitive pointer analysis

\[\begin{align*}
S1: & \quad l := \text{new Cons} \\
p := l \\
S2: & \quad t := \text{new Cons} \\
*p := t \\
p := t
\end{align*}\]
Flow insensitive pointer analysis

S1: \(l := \text{new Cons} \)

\[
\begin{align*}
p &:= l \\
S2: \ t &:= \text{new Cons} \\
*_{p} &:= t \\
p &:= t
\end{align*}
\]
Flow sensitive vs. insensitive

S1: \(l := \text{new Cons} \)

\[p := l \]

S2: \(t := \text{new Cons} \)

\[*p := t \]

\[p := t \]

Flow-sensitive Soln

Flow-insensitive Soln
What went wrong?

• What happened to the link between p and S1?
 – Can’t do strong updates anymore!
 – Need to remove all the kill sets from the flow functions.

• What happened to the self loop on S2?
 – We still have to iterate!
Flow insensitive pointer analysis: fixed

S1: l := new Cons

S2: t := new Cons

*p := t

p := t
Flow insensitive pointer analysis: fixed

S1: \(l := \text{new Cons} \)

\(p := l \)

S2: \(t := \text{new Cons} \)

\(*p := t \)

\(p := t \)

This is Andersen’s algorithm ’94

Final result

Iter 1

Iter 2

Iter 3

Final result

This is Andersen’s algorithm’94
Flow sensitive vs. insensitive, again

S1: \(l := \text{new Cons} \)

Flow-sensitive Soln

\(p := l \)

\(\ast p := t \)

\(p := t \)

Flow-insensitive Soln

\(l \rightarrow S1 \rightarrow S2 \)

\(l \rightarrow S1 \rightarrow S2 \)

\(l \rightarrow S1 \rightarrow S2 \)

\(l \rightarrow S1 \rightarrow S2 \)
Flow insensitive loss of precision

• Flow insensitive analysis leads to loss of precision!

```go
main() {
    x := &y;

    ...  // Flow insensitive analysis tells us that x may point to z here!

    x := &z;
}
```

• However:
 – uses less memory (memory can be a big bottleneck to running on large programs)
 – runs faster
In Class Exercise!

S1: $p := \text{new Cons}$

S2: $q := \text{new Cons}$

$p = q$

$q = \&q$

$q = r$

$q = p$

$s = r$

$s = p$

$r = s$
In Class Exercise! solved

S1: p := new Cons

S2: q := new Cons

*p = q

r = &q

*q = r

s = r

*s = p

*r = s
Worst case complexity of Andersen

Worst case: N^2 per statement, so at least N^3 for the whole program. Andersen is in fact $O(N^3)$.
New idea: one successor per node

- Make each node have only one successor.
- This is an invariant that we want to maintain.
More general case for $*x = y$
More general case for $x^* = y$
Handling: $x = *y$
Handling: \(x = *y \)
Handling: $x = y$ (what about $y = x$?)

Handling: $x = \& y$
Handling: \(x = y \) (what about \(y = x \)?)

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]

\[
\begin{array}{ccc}
x & \rightarrow & y \\
\downarrow & & \downarrow \\
& & \\
\end{array}
\]
Our favorite example, once more!

S1: \(l := \text{new Cons} \)

\[\text{p := l} \]

S2: \(t := \text{new Cons} \)

\[*\text{p := t} \]

\[\text{p := t} \]
Our favorite example, once more!

```
S1: l := new Cons
p := l
S2: t := new Cons
*p := t
p := t
```

Diagram:

1. S1: l := new Cons
2. p := l
3. S2: t := new Cons
4. *p := t
5. p := t
Flow insensitive loss of precision

S1: \(l := \text{new Cons} \)

\(p := l \)

S2: \(t := \text{new Cons} \)

\(^*p := t \)

\(p := t \)
Another example

```c
bar() {
    ① i := &a;
    ② j := &b;
    ③ foo(&i);  // p = \xi
    ④ foo(&i);  // i pnts to what?
        *i := ...;
}

void foo(int* p) {
    printf("%d",*p);
}
```
Another example

```c
bar() {
    i := &a;
    j := &b;
    foo(&i);
    foo(&j);
    // i pnts to what?
    *i := ...;
}

void foo(int* p) {
    printf("%d", *p);
}
```
Almost linear time

- Time complexity: $O(N\alpha(N, N))$

- So slow-growing, it is basically linear in practice

- For the curious: node merging implemented using UNION-FIND structure, which allows set union with amortized cost of $O(\alpha(N, N))$ per op. Take CSE 202 to learn more!
In Class Exercise!

S1: p := new Cons

S2: q := new Cons

*p = q

r = &q

*q = r

s = r

*q = p

s = p

*r = s
In Class Exercise! solved

S1: \(p := \text{new Cons} \)

S2: \(q := \text{new Cons} \)

\(*p = q \)

\(r = &q \)

\(*q = r \)

\(s = r \)

\(s = p \)

\(*r = s \)

Steensgaard

Andersen
Advanced Pointer Analysis

- Combine flow-sensitive/flow-insensitive
- Clever data-structure design
- Context-sensitivity