Pointer analysis

Pointer Analysis

« Outline:
— What is pointer analysis
— Intraprocedural pointer analysis
— Interprocedural pointer analysis
+ Andersen and Steensgaard

Pointer and Alias Analysis

Useful for what?

+ Aliases: two expressions that denote the same memory location.

« Aliases are introduced by:
— pointers
— call-by-reference
— array indexing
— C unions

Improve the precision of analyses that require knowing what is modified or
referenced (eg const prop, CSE ...)

Eliminate redundant loads/stores and dead stores.

x = *p; *x o=
// is *x dead?

y = *p; // replace with y := x?

Parallelization of code
— can recursive calls to quick_sort be run in parallel? Yes, provided that they reference
distinct regions of the array.

Identify objects to be tracked in error detection tools
x.lock() ;

y.unlock(); // same object as x?

Kinds of alias information

Points-to information (must or may versions)
— at program point, compute a set of pairs of the form p ! x, where p points to x.
— can represent this information

in a points-to graph -<:__-

Alias pairs
— at each program point, compute the set of of all pairs (e,,e,) where e, and e, must/may
reference the same memory.

Storage shape analysis
— at each program point, compute an o]
abstract description of the pointer structure.

Intraprocedural Points-to Analysis

« Want to compute may-points-to information

S| KeVm,ye VM]

« Lattice: O = Q_L)(

C
n
N <

\i

- £

- WK [xe ¥ Ve V%}

AU

Flow functions

Fy=i(in) =

[in ,
Pt~

l out

Flow functions

.lm

Fyi=y(in) =

Fyi= gy(in) =

7 8
Flow functions Intraprocedural Points-to Analysis
l * Flow functions:
in
x 1= *y| Fx=y(n) =
kill(#) = Uyevars{(x,)}
out Frn(S) = §— killx)
Frcatt{S) = 8- kill(z)
Fr=yg(S) = 8- kill(@) U{(z,v) | (3,v) € S}
[in Frcg(8) = §—hillle) U {(z.9)}
S Fuy :y(in) = Frimay(8) = 8§ — kll(2) U {(2.9)[7t € Vars.[(y,1) € SA(t,0) € ST}
et Vim ol (e 8] in
l out § — (if V = {v} then kll(v) clsc 0)
L{(w.) (v EV Ay,t) € S}
9 10
Pointers to dynamically-allocated memory Example
+ Handle statements of the form: x := new T
« One idea: generate a new variable each time the
new statement is analyzed to stand for the new
location:
B e 7(S) = S — kill{z) U {(x, newvar(})}
11 12

Example solved

3
w004
(e}

vi] [t [v2]
P -2 et

l
Ralad

What went wrong?

Bk A [N Azl
Q—@ANQ)/

Lattice infinitely tall!

We were essentially running the program

Instead, we need to summarize the infinitely many allocated
objects in a finite way

New Idea: introduce summary nodes, which will stand for an

entire set of allocated objects.

13

14

What went wrong?

» Example: For each new statement with Iabe@ntroduce a
summary node which stands for the memory allocated by
statement L.

Fr: zi=new 7(S) = S — kill(z) U {(z, locr)}

* Summary nodes can use other criterion for merging.

Example revisited

/7 1
P\)g _//tv)%nz
1

Ll-

Dt

"
0. at
p

15

16

Example revisited & solved

Array aliasing, and pointers to arrays

« Array indexing can cause aliasing:
- al[i] aliases b[j] if:

Iter 1 Iter 2 Iter 3 « aaliasesbandi=j
A nn « aand b overlap, and i = j + k, where k is the amount of overlap.

P 3 -

5 (51152 « Can have pointers to elements of an array
ﬂ* l'.I* -p := &a[i]; ...; p++;

« How can arrays be modeled?
n* |-‘|* — Could treat the whole array as one location.

2} — Could try to reason about the array index expressions: array dependence

analysis.

(e} (e}

(2] 52},

18

19

Fields

Can summarize fields using per field summary

— for each field F, keep a points-to node called F that summarizes all
possible values that can ever be stored in F

Can also use allocation sites

— for each field F, and each allocation site S, keep a points-to node called
(F, S) that summarizes all possible values that can ever be stored in the
field F of objects allocated at site S.

Summary

* We just saw:
— intraprocedural points-to analysis
— handling dynamically allocated memory
— handling pointers to arrays

« But, intraprocedural pointer analysis is not enough.

— Sharing data structures across multiple procedures is one the big benefits of pointers:
instead of passing the whole data structures around, just pass pointers to them (eg C
pass by reference).

— So pointers end up pointing to structures shared across procedures.

— If you don't do an interproc analysis, you'll have to make conservative assumptions
functions entries and function calls.

20 21
Conservative approximation on entry Conservative approximation on entry
+ Say we don’ t have interprocedural pointer analysis. * Here are a few solutions:
» What should the information be at the input of the following
procedure: global g;
void p(x,y) {
global g; = o gyl
void p(x,y) {) sites prior eo this
! « They are all very conservative!
* We can try to do better.
22 23

Interprocedural pointer analysis

+ Main difficulty in performing interprocedural pointer analysis is
scaling

» A single points-to-graph can be O(size of program)

Example revisited

+ Cost:

— space: store one fact at each prog point
S1: 1 := new Cons — time: iteration

Iter 1

g
N

Iter 3

H
[+]
[l
8=
E‘ﬂ
[

[+]
42

Ed
[]

[+]
B

‘E
[#]

[+
B
fo]
cﬂ‘
[]
[+
]
]
sﬂ‘
o

[+]
[~]

g
g
‘E
g
7
Ha
&

24

25

New idea: store one dataflow fact

« Store one dataflow fact for the whole program

+ Each statement updates this one dataflow fact
— use the previous flow functions, but now they take the whole program
dataflow fact, and return an updated version of it.
» Process each statement once, ignoring the order of the
statements
+ This is called a flow-insensitive analysis.

Flow insensitive pointer analysis

S1: 1 := new Cons

26 27
Flow insensitive pointer analysis Flow sensitive vs. insensitive
S1: 1 = new Cons
Fl i Soln Flow-i itive Soln
|
SOEHE2 2
=2 [THEz-£8
(]
o
(=]
52)
28 29
What went wrong? Flow insensitive pointer analysis: fixed
* What happened to the link between p and S1? = fg/ /\
— Can't do strong updates anymore! f ' ;{_ _~>§
— Need to remove all the kill sets from the flow functions.] Sl S
» What happened to the self loop on S2? =
— We still have to iterate! (e]
/r
158
A
f
B
31

30

Flow insensitive pointer analysis: fixed

This is Andersen’s

Flow sensitive vs. insensitive, again

algorithm * 94 Final result
* *
Iter 1 Iter 2 iter 3 Fl tive Soin Fl Soln
: bk 14 :
) CRE-E3)
S2: t := new Con: E* E‘
& %) 2y
s2}
P o .
-
\
(e} (e} (e}
ey ‘*
32 33
Flow insensitive loss of precision In Class Exercise!
« Flow insensitive analysis leads to loss of S1: p := new Cons
precision!
main() {
x i= sy;
Flow insensitive analysis tells us that x
may point to z here!
X = &z
}
* However:
— uses less memory (memory can be a big bottleneck
to running on large programs)
— runs faster
34 35
In Class Exercise! solved Worst case complexity of Andersen
Sl: p := new Cons
=]
] [[[@ [=
Worst case: N2 per
statement, so at least N3
for the whole program.
Andersen is in
fact O(N3)
36 37

New idea: one successor per node

» Make each node have only one successor.

« This is an invariant that we want to maintain.

2 eyl

More general case for *x = y

38

39

More general case for *x = y

7

Handling: x = *y

40

41

Handling: x = *y

Handling: x = y (what about y = x?)

42

43

Handling: x =y (what about y = x?)

x=y N
[] {]
=@ T —
nj .
ory = x

Handling: x = &y

Our favorite example, once more!

iemen]O 4
“% N
: ¢

44

45

Our favorite example, once more!

o & ¥ o I

L2

it

Flow insensitive loss of precision

S1: 1 := new Cons | _ . o Flow-insensitive
Unification-

Subset-based Subset-based based

®)
/ 77777777777777777777777777777777 Eﬂf%
[¢]
’-En
46 47
Another example Another example
[¢]

B0l A @1 2 e bl Gle
Bimm P, 8 doviety;] IR [
@ somtzy); p-gj @ £oo(s3) ;

// i pnts to dnate . // i pnts to what? %

*ii= L. P~ = al *io= oL

void foo(int* p) {
printf (“sd”, *p) ;

}

(2]

void foo(int* p) (CG1ED
[EIENDRSSN
IED 3

printf (“sd”, *p) ;

48

49

Almost linear time

+ Time complexity: O(Na(N, N))

inverse Ackermann
functi

* So slow-growing, it is basically linear in practice

« For the curious: node merging implemented
using UNION-FIND structure, which allows set
union with amortized cost of O(a(N, N)) per op.
Take CSE 202 to learn more!

In Class Exercise!

S1: p := new Cons
S2: q := new Cons

50

51

In Class Exercise! solved

Sl: p := new Cons

S2: q := new Cons

Andersen

Advanced Pointer Analysis

« Combine flow-sensitive/flow-insensitive

« Clever data-structure design

« Context-sensitivity

52

53

