
1

Black History Month, a little computing history

Betty Jean Jennings

Fran Bilas

• The first programmers of the ENIAC were women: Kathleen McNulty Mauchly Antonelli, Jean

Jennings Bartik, Frances Snyder Holberton, Marlyn Wescoff Meltzer, Frances Bilas Spence and

Ruth Lichterman Teitelbaum.

• https://penntoday.upenn.edu/news/eniacs-anniversary-nod-its-female-computers

• https://www.digitaltrends.com/computing/remembering-eniac-and-the-women-who-

programmed-it/

• Many women worked on iconic Atari video games

• http://www.atariwomen.org/

• Black women worked as “computers” during the space race

• https://en.wikipedia.org/wiki/Hidden_Figures_(book)

Program Representations

Representing programs

• Goals

Representing programs

• Primary goals
– analysis is easy and effective

• just a few cases to handle

• directly link related things

– transformations are easy to perform

– general, across input languages and target machines

• Additional goals
– compact in memory

– easy to translate to and from

– tracks info from source through to binary, for source-level debugging, profilling, typed
binaries

– extensible (new opts, targets, language features)

– displayable

Option 1: high-level syntax based IR

• Represent source-level structures and expressions directly

• Example: Abstract Syntax Tree

Option 2: low-level IR

• Translate input programs into low-

level primitive chunks, often close

to the target machine

• Examples: assembly code, virtual

machine code (e.g. stack

machines), three-address code,

register-transfer language (RTL)

• Standard RTL instrs:

1 2

3 4

5 6

https://penntoday.upenn.edu/news/eniacs-anniversary-nod-its-female-computers
https://www.digitaltrends.com/computing/remembering-eniac-and-the-women-who-programmed-it/
http://www.atariwomen.org/
https://en.wikipedia.org/wiki/Hidden_Figures_(book)

2

Option 2: low-level IR Comparison

Comparison

• Advantages of high-level rep

– analysis can exploit high-level knowledge of constructs

– easy to map to source code (debugging, profiling)

• Advantages of low-level rep

– can do low-level, machine specific reasoning

– can be language-independent

• Can mix multiple reps in the same compiler

Components of representation

• Control dependencies: sequencing of operations
– evaluation of if & then

– side-effects of statements occur in right order

• Data dependencies: flow of definitions from defs to uses
– operands computed before operations

• Ideal: represent just dependencies that matter
– dependencies constrain transformations

– fewest dependences) flexibility in implementation

Control dependencies

• Option 1: high-level representation

– control implicit in semantics of AST nodes

• Option 2: control flow graph (CFG)

– nodes are individual instructions

– edges represent control flow between instructions

• Options 2b: CFG with basic blocks

– basic block: sequence of instructions that don’t have any branches, and

that have a single entry point

– BB can make analysis more efficient: compute flow functions for an entire

BB before start of analysis

Control dependencies

• CFG does not capture loops very well

• Some fancier options include:

– the Control Dependence Graph

– the Program Dependence Graph

• More on this later. Let’s first look at data dependencies

7 8

9 10

11 12

3

Data dependencies

• Simplest way to represent data dependencies: def/use chains

x := ...

y := ...

... x ...

x := x + y

... x ...

x := ...

y := y + 1

... x ...

... y ...

... y y ...

... y ...

Def/use chains

• Directly captures dataflow

– works well for things like constant prop

• But...

• Ignores control flow

– misses some opt opportunities since conservatively considers all paths

– not executable by itself (for example, need to keep CFG around)

– not appropriate for code motion transformations

• Must update after each transformation

• Space consuming

SSA

• Static Single Assignment

– invariant: each use of a variable has only one def

x := ...

y := ...

... x ...

x := x + y

... x ...

x := ...

y := y + 1

... x ...

... y ...

... y y ...

... y ...

SSA

• Create a new variable for each def

• Insert  pseudo-assignments at merge points

• Adjust uses to refer to appropriate new names

• Question: how can one figure out where to insert  nodes using a

liveness analysis and a reaching defns analysis.

Converting back from SSA

• Semantics of x3 := (x1, x2)

– set x3 to xi if execution came from ith predecessor

• How to implement  nodes?

13 14

15 16

17 18

4

Converting back from SSA

• Semantics of x3 := (x1, x2)

– set x3 to xi if execution came from ith predecessor

• How to implement  nodes?

– Insert assignment x3 := x1 along 1st predecessor

– Insert assignment x3 := x2 along 2nd predecessor

• If register allocator assigns x1, x2 and x3 to the same register,

these moves can be removed

– x1 .. xn usually have non-overlapping lifetimes, so this kind of register

assignment is legal

Recall: Common Sub-expression Elim

• Want to compute when an expression is available in a var

• Domain:

Recall: CSE Flow functions

X := Y op Z

in

out

FX := Y op Z(in) = in – { X ! * }

– { * ! ... X ... } [
{ X ! Y op Z | X  Y Æ X  Z}

X := Y

in

out

FX := Y(in) = in – { X ! * }

– { * ! ... X ... } [
{ X ! E | Y ! E 2 in }

Example

i := a + b

x := i * 4

y := i * 4

i := i + 1

m := b + a

w := 4 * m

j := i

i := c

z := j * 4

Example

i := a + b

x := i * 4

y := i * 4

i := i + 1

m := b + a

w := 4 * m

j := i

i := c

z := j * 4

Problems

• z := j * 4 is not optimized to z := x, even though x contains the

value j * 4

• m := b + a is not optimized, even though a + b was already

computed

• w := 4 * m it not optimized to w := x, even though x contains the

value 4 *m

19 20

21 22

23 24

5

Problems: more abstractly

• Available expressions overly sensitive to name choices, operand

orderings, renamings, assignments

• Use SSA: distinct values have distinct names

• Do copy prop before running available exprs

• Adopt canonical form for commutative ops

Example in SSA

X := Y op Z

in

out

FX := Y op Z(in) =

X := (Y,Z)

in0

out

FX :=  (Y,Z)(in0, in1) =

in1

Example in SSA

X := Y op Z

in

out

FX := Y op Z(in) = in [{ X ! Y op Z }

X := (Y,Z)

in0

out

FX :=  (Y,Z)(in0, in1) = (in0 Å in1) [

{ X ! E | Y ! E 2 in0 Æ Z ! E 2 in1 }

in1

Example in SSA

i := a + b

x := i * 4

y := i * 4

i := i + 1

m := b + a

w := 4 * m

j := i

i := c

z := j * 4

Example in SSA

i1 := a1 + b1

x1 := i1 * 4

i4 := (i1,i3)

y1 := i4 * 4

i3 := i4 + 1

m1 := a1 + b1

w1 := m1 * 4

j1 := i1

i2 := c1

z1 := i1 * 4

What about pointers?

• Pointers complicate SSA. Several options.

• Option 1: don’t use SSA for pointed to variables

• Option 2: adapt SSA to account for pointers

• Option 3: define src language so that variables cannot be pointed

to (eg: Java)

25 26

27 28

29 30

6

SSA helps us with CSE

• Let’s see what else SSA can help us with

• Loop-invariant code motion

Loop-invariant code motion

• Two steps: analysis and transformations

• Step1: find invariant computations in loop

– invariant: computes same result each time evaluated

• Step 2: move them outside loop

– to top if used within loop: code hoisting

– to bottom if used after loop: code sinking

Example

x := 3

p := w + y

x := x + 1

q := q + 1

z := x * y

q := y * y

w := y + 2

y := 4 y := 5

w := w + 5

Example

x := 3

p := w + y

x := x + 1

q := q + 1

z := x * y

q := y * y

w := y + 2

y := 4 y := 5

w := w + 5

Detecting loop invariants

• An expression is invariant in a loop L iff:

(base cases)

– it’s a constant

– it’s a variable use, all of whose defs are outside of L

(inductive cases)

– it’s a pure computation all of whose args are loop-invariant

– it’s a variable use with only one reaching def, and the rhs of that def is

loop-invariant

Computing loop invariants

• Option 1: iterative dataflow analysis

– optimistically assume all expressions loop-invariant, and propagate

• Option 2: build def/use chains

– follow chains to identify and propagate invariant expressions

• Option 3: SSA

– like option 2, but using SSA instead of def/use chains

31 32

33 34

35 36

7

Example using def/use chains

• An expression is invariant

in a loop L iff:

(base cases)

– it’s a constant

– it’s a variable use, all of

whose defs are outside of L

(inductive cases)

– it’s a pure computation all of

whose args are loop-invariant

– it’s a variable use with only

one reaching def, and the rhs

of that def is loop-invariant

x := 3

p := w + y

x := x + 1

q := q + 1

z := x * y

q := y * y

w := y + 2

y := 4 y := 5

w := w + 5

Example using def/use chains

• An expression is invariant

in a loop L iff:

(base cases)

– it’s a constant

– it’s a variable use, all of

whose defs are outside of L

(inductive cases)

– it’s a pure computation all of

whose args are loop-invariant

– it’s a variable use with only

one reaching def, and the rhs

of that def is loop-invariant

x := 3

p := w + y

x := x + 1

q := q + 1

z := x * y

q := y * y

w := y + 2

y := 4 y := 5

w := w + 5

Loop invariant detection using SSA

• An expression is invariant in a loop L iff:

(base cases)
– it’s a constant

– it’s a variable use, all of whose single defs are outside
of L

(inductive cases)
– it’s a pure computation all of whose args are loop-

invariant

– it’s a variable use whose single reaching def, and the
rhs of that def is loop-invariant

•  functions are not pure

Example using SSA

• An expression is invariant in
a loop L iff:

(base cases)
– it’s a constant

– it’s a variable use, all of
whose single defs are outside
of L

(inductive cases)
– it’s a pure computation all of

whose args are loop-invariant

– it’s a variable use whose
single reaching def, and the
rhs of that def is loop-invariant

•  functions are not pure

x1 := 3

w3 := (w1,w2)

p1 := w3 + y3

x3 := x2 + 1

q2 := q1 + 1

x2 := (x1,x3)

y3 := (y1,y2,y3)

z1 := x2 * y3

q1 := y3 * y3

w1 := y3 + 2

y1 := 4 y2 := 5

w2 := w1 + 5

Example using SSA and preheader

• An expression is invariant in
a loop L iff:

(base cases)
– it’s a constant

– it’s a variable use, all of
whose single defs are outside
of L

(inductive cases)
– it’s a pure computation all of

whose args are loop-invariant

– it’s a variable use whose
single reaching def, and the
rhs of that def is loop-invariant

•  functions are not pure

x1 := 3

w3 := (w1,w2)

p1 := w3 + y3

x3 := x2 + 1

q2 := q1 + 1

x2 := (x1,x3)

z1 := x2 * y3

q1 := y3 * y3

w1 := y3 + 2

y1 := 4 y2 := 5

w2 := w1 + 5

y3 := (y1,y2)

Summary: Loop-invariant code motion

• Two steps: analysis and transformations

• Step1: find invariant computations in loop

– invariant: computes same result each time evaluated

• Step 2: move them outside loop

– to top if used within loop: code hoisting

– to bottom if used after loop: code sinking

37 38

39 40

41 42

8

Code motion

• Say we found an invariant computation, and we

want to move it out of the loop (to loop pre-

header)

• When is it legal?

• Need to preserve relative order of invariant

computations to preserve data flow among move

statements

• Need to preserve relative order between

invariant computations and other computations

Example

x := a * b

y := x / z

i := i + 1

z != 0 &&

i < 100 ?

q := x + 1

x := 0

y := 1

i := 0

Lesson from example: domination restriction

• To move statement S to loop pre-header, S must

dominate all loop exits

[A dominates B when all paths to B first pass through A]

• Otherwise may execute S when never executed

otherwise

• If S is pure, then can relax this constraint at cost

of possibly slowing down the program

Domination restriction in for loops

Domination restriction in for loops Avoiding domination restriction

• Domination restriction strict

– Nothing inside branch can be moved

– Nothing after a loop exit can be moved

• Can be circumvented through loop normalization

– while-do => if-do-while

43 44

45 46

47 48

9

Another example

i := i + 1

z := z + 1

... z ...

z := 5

i := 0

z := 0

i < N ?

Data dependence restriction

• To move S: z := x op y:

S must be the only assignment to z in loop, and

no use of z in loop reached by any def other

than S

• Otherwise may reorder defs/uses

Avoiding data restriction

z := z + 1

z := 0

i := i + 1

i < N ?

... z ...

z := 5

i := 0

Avoiding data restriction

z2 := (z1,z4)

i2 := (i1,i3)

z3 := z2 + 1

z4 := 0

i3 := i2 + 1

i3 < N ?

... z4 ...

z1 := 5

i1 := 0

• Restriction unnecessary

in SSA!!!

• Implementation of phi

nodes as moves will

cope with re-ordered

defs/uses

Summary of Data dependencies

• We’ve seen SSA, a way to encode data dependencies better than

just def/use chains

– makes CSE easier

– makes loop invariant detection easier

– makes code motion easier

• Now we move on to looking at how to encode control

dependencies

Control Dependencies

• A node (basic block) Y is control-dependent on another X iff X

determines whether Y executes

– there exists a path from X to Y s.t. every node in the path other than X and

Y is post-dominated by Y

– X is not post-dominated by Y

49 50

51 52

53 54

10

Control Dependencies

• A node (basic block) Y is control-dependent on another X iff X

determines whether Y executes

– there exists a path from X to Y s.t. every node in the path other than X and

Y is post-dominated by Y

– X is not post-dominated by Y

Example

Example Control Dependence Graph

• Control dependence graph: Y descendent of X iff Y is control

dependent on X

– label each child edge with required condition

– group all children with same condition under region node

• Program dependence graph: super-impose dataflow graph (in

SSA form or not) on top of the control dependence graph

Example Example

55 56

57 58

59 60

11

Another example Another example

Another example Summary of Control Depence Graph

• More flexible way of representing control-depencies than CFG

(less constraining)

• Makes code motion a local transformation

• However, much harder to convert back to an executable form

Course summary so far

• Dataflow analysis

– flow functions, lattice theoretic framework, optimistic iterative

analysis, precision, MOP

• Advanced Program Representations

– SSA, CDG, PDG

• Along the way, several analyses and opts

– reaching defns, const prop & folding, available exprs & CSE,

liveness & DAE, loop invariant code motion

• Pointer analysis

– Andersen, Steensguaard, and long the way: flow-insensitive

analysis

• Next: dealing with procedures

61 62

63 64

65

