
1

Black History Month, a little computing history

Betty Jean Jennings

Fran Bilas

• The first programmers of the ENIAC were women: Kathleen McNulty Mauchly Antonelli, Jean 

Jennings Bartik, Frances Snyder Holberton, Marlyn Wescoff Meltzer, Frances Bilas Spence and 

Ruth Lichterman Teitelbaum.

• https://penntoday.upenn.edu/news/eniacs-anniversary-nod-its-female-computers

• https://www.digitaltrends.com/computing/remembering-eniac-and-the-women-who-

programmed-it/

• Many women worked on iconic Atari video games

• http://www.atariwomen.org/

• Black women worked as “computers” during the space race

• https://en.wikipedia.org/wiki/Hidden_Figures_(book)

Program Representations

Representing programs

• Goals

Representing programs

• Primary goals
– analysis is easy and effective

• just a few cases to handle

• directly link related things

– transformations are easy to perform

– general, across input languages and target machines

• Additional goals
– compact in memory

– easy to translate to and from

– tracks info from source through to binary, for source-level debugging, profilling, typed 
binaries

– extensible (new opts, targets, language features)

– displayable

Option 1: high-level syntax based IR

• Represent source-level structures and expressions directly

• Example: Abstract Syntax Tree

Option 2: low-level IR

• Translate input programs into low-

level primitive chunks, often close 

to the target machine

• Examples: assembly code, virtual 

machine code (e.g. stack 

machines), three-address code, 

register-transfer language (RTL)

• Standard RTL instrs:
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Option 2: low-level IR Comparison

Comparison

• Advantages of high-level rep

– analysis can exploit high-level knowledge of constructs

– easy to map to source code (debugging, profiling)

• Advantages of low-level rep

– can do low-level, machine specific reasoning

– can be language-independent

• Can mix multiple reps in the same compiler

Components of representation

• Control dependencies: sequencing of operations
– evaluation of if & then

– side-effects of statements occur in right order

• Data dependencies: flow of definitions from defs to uses
– operands computed before operations

• Ideal: represent just dependencies that matter
– dependencies constrain transformations

– fewest dependences ) flexibility in implementation

Control dependencies

• Option 1: high-level representation

– control implicit in semantics of AST nodes

• Option 2: control flow graph (CFG)

– nodes are individual instructions

– edges represent control flow between instructions

• Options 2b: CFG with basic blocks

– basic block: sequence of instructions that don’t have any branches, and 

that have a single entry point

– BB can make analysis more efficient: compute flow functions for an entire 

BB before start of analysis

Control dependencies

• CFG does not capture loops very well

• Some fancier options include:

– the Control Dependence Graph

– the Program Dependence Graph

• More on this later. Let’s first look at data dependencies
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Data dependencies

• Simplest way to represent data dependencies: def/use chains

x := ...

y := ...

... x ...

x := x + y

... x ...

x := ...

y := y + 1

... x ...

... y ...

... y ...... y ...

... y ...

Def/use chains

• Directly captures dataflow

– works well for things like constant prop

• But...

• Ignores control flow

– misses some opt opportunities since conservatively considers all paths

– not executable by itself (for example, need to keep CFG around)

– not appropriate for code motion transformations

• Must update after each transformation

• Space consuming

SSA

• Static Single Assignment

– invariant: each use of a variable has only one def

x := ...

y := ...

... x ...

x := x + y

... x ...

x := ...

y := y + 1

... x ...

... y ...

... y ...... y ...

... y ...

SSA

• Create a new variable for each def

• Insert  pseudo-assignments at merge points

• Adjust uses to refer to appropriate new names

• Question: how can one figure out where to insert  nodes using a 

liveness analysis and a reaching defns analysis.

Converting back from SSA

• Semantics of x3 := (x1, x2)

– set x3 to xi if execution came from ith predecessor

• How to implement  nodes?
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Converting back from SSA

• Semantics of x3 := (x1, x2)

– set x3 to xi if execution came from ith predecessor

• How to implement  nodes?

– Insert assignment x3 := x1 along 1st predecessor

– Insert assignment x3 := x2 along 2nd predecessor

• If register allocator assigns x1, x2 and x3 to the same register, 

these moves can be removed

– x1 .. xn usually have non-overlapping lifetimes, so this kind of register 

assignment is legal

Recall: Common Sub-expression Elim

• Want to compute when an expression is available in a var

• Domain:

Recall: CSE Flow functions

X := Y op Z

in

out

FX := Y op Z(in) = in – { X ! * } 

– { * ! ... X ... } [
{ X ! Y op Z  | X  Y Æ X  Z}

X := Y

in

out

FX := Y(in) = in – { X ! * } 

– { * ! ... X ... } [
{ X ! E  | Y ! E 2 in }

Example

i := a + b

x := i * 4

y := i * 4

i := i + 1

m := b + a

w := 4 * m

j := i

i := c

z := j * 4 

Example

i := a + b

x := i * 4

y := i * 4

i := i + 1

m := b + a

w := 4 * m

j := i

i := c

z := j * 4 

Problems

• z := j * 4 is not optimized to z := x, even though x contains the 

value j * 4

• m := b + a is not optimized, even though a + b was already 

computed

• w := 4 * m it not optimized to w := x, even though x contains the 

value 4 *m
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Problems: more abstractly

• Available expressions overly sensitive to name choices, operand 

orderings, renamings, assignments

• Use SSA: distinct values have distinct names

• Do copy prop before running available exprs

• Adopt canonical form for commutative ops

Example in SSA

X := Y op Z

in

out

FX := Y op Z(in) =

X := (Y,Z)

in0

out

FX :=  (Y,Z)(in0, in1) =

in1

Example in SSA

X := Y op Z

in

out

FX := Y op Z(in) = in [ { X ! Y op Z }

X := (Y,Z)

in0

out

FX :=  (Y,Z)(in0, in1) = (in0 Å in1 ) [

{ X ! E  | Y ! E 2 in0 Æ Z ! E 2 in1 }

in1

Example in SSA

i := a + b

x := i * 4

y := i * 4

i := i + 1

m := b + a

w := 4 * m

j := i

i := c

z := j * 4 

Example in SSA

i1 := a1 + b1

x1 := i1 * 4

i4 := (i1,i3) 

y1 := i4 * 4

i3 := i4 + 1

m1 := a1 + b1

w1 := m1 * 4

j1 := i1

i2 := c1

z1 := i1 * 4 

What about pointers?

• Pointers complicate SSA. Several options.

• Option 1: don’t use SSA for pointed to variables

• Option 2: adapt SSA to account for pointers

• Option 3: define src language so that variables cannot be pointed 

to (eg: Java)
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SSA helps us with CSE

• Let’s see what else SSA can help us with

• Loop-invariant code motion

Loop-invariant code motion

• Two steps: analysis and transformations

• Step1: find invariant computations in loop

– invariant: computes same result each time evaluated

• Step 2: move them outside loop

– to top if used within loop: code hoisting

– to bottom if used after loop: code sinking

Example

x := 3

p := w + y

x := x + 1

q := q + 1

z := x * y

q := y * y

w := y + 2 

y := 4 y := 5

w := w + 5

Example

x := 3

p := w + y

x := x + 1

q := q + 1

z := x * y

q := y * y

w := y + 2 

y := 4 y := 5

w := w + 5

Detecting loop invariants

• An expression is invariant in a loop L iff:

(base cases)

– it’s a constant

– it’s a variable use, all of whose defs are outside of L

(inductive cases)

– it’s a pure computation all of whose args are loop-invariant

– it’s a variable use with only one reaching def, and the rhs of that def is 

loop-invariant

Computing loop invariants

• Option 1: iterative dataflow analysis

– optimistically assume all expressions loop-invariant, and propagate 

• Option 2: build def/use chains

– follow chains to identify and propagate invariant expressions

• Option 3: SSA

– like option 2, but using SSA instead of def/use chains
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Example using def/use chains

• An expression is invariant 

in a loop L iff:

(base cases)

– it’s a constant

– it’s a variable use, all of 

whose defs are outside of L

(inductive cases)

– it’s a pure computation all of 

whose args are loop-invariant

– it’s a variable use with only 

one reaching def, and the rhs 

of that def is loop-invariant

x := 3

p := w + y

x := x + 1

q := q + 1

z := x * y

q := y * y

w := y + 2 

y := 4 y := 5

w := w + 5

Example using def/use chains

• An expression is invariant 

in a loop L iff:

(base cases)

– it’s a constant

– it’s a variable use, all of 

whose defs are outside of L

(inductive cases)

– it’s a pure computation all of 

whose args are loop-invariant

– it’s a variable use with only 

one reaching def, and the rhs 

of that def is loop-invariant

x := 3

p := w + y

x := x + 1

q := q + 1

z := x * y

q := y * y

w := y + 2 

y := 4 y := 5

w := w + 5

Loop invariant detection using SSA

• An expression is invariant in a loop L iff:

(base cases)
– it’s a constant

– it’s a variable use, all of whose single defs are outside 
of L

(inductive cases)
– it’s a pure computation all of whose args are loop-

invariant

– it’s a variable use whose single reaching def, and the 
rhs of that def is loop-invariant

•  functions are not pure

Example using SSA

• An expression is invariant in 
a loop L iff:

(base cases)
– it’s a constant

– it’s a variable use, all of 
whose single defs are outside 
of L

(inductive cases)
– it’s a pure computation all of 

whose args are loop-invariant

– it’s a variable use whose 
single reaching def, and the 
rhs of that def is loop-invariant

•  functions are not pure

x1 := 3

w3 := (w1,w2) 

p1 := w3 + y3

x3 := x2 + 1

q2 := q1 + 1

x2 := (x1,x3) 

y3 := (y1,y2,y3) 

z1 := x2 * y3

q1 := y3 * y3

w1 := y3 + 2 

y1 := 4 y2 := 5

w2 := w1 + 5

Example using SSA and preheader

• An expression is invariant in 
a loop L iff:

(base cases)
– it’s a constant

– it’s a variable use, all of 
whose single defs are outside 
of L

(inductive cases)
– it’s a pure computation all of 

whose args are loop-invariant

– it’s a variable use whose 
single reaching def, and the 
rhs of that def is loop-invariant

•  functions are not pure

x1 := 3

w3 := (w1,w2) 

p1 := w3 + y3

x3 := x2 + 1

q2 := q1 + 1

x2 := (x1,x3) 

z1 := x2 * y3

q1 := y3 * y3

w1 := y3 + 2 

y1 := 4 y2 := 5

w2 := w1 + 5

y3 := (y1,y2) 

Summary: Loop-invariant code motion

• Two steps: analysis and transformations

• Step1: find invariant computations in loop

– invariant: computes same result each time evaluated

• Step 2: move them outside loop

– to top if used within loop: code hoisting

– to bottom if used after loop: code sinking
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Code motion

• Say we found an invariant computation, and we 

want to move it out of the loop (to loop pre-

header)

• When is it legal?

• Need to preserve relative order of invariant 

computations to preserve data flow among move 

statements

• Need to preserve relative order between 

invariant computations and other computations

Example

x := a * b

y := x / z

i := i + 1

z != 0 && 

i < 100 ?

q := x + 1

x := 0

y := 1

i := 0

Lesson from example: domination restriction

• To move statement S to loop pre-header, S must 

dominate all loop exits 

[ A dominates B when all paths to B first pass through A ]

• Otherwise may execute S when never executed 

otherwise

• If S is pure, then can relax this constraint at cost 

of possibly slowing down the program

Domination restriction in for loops

Domination restriction in for loops Avoiding domination restriction

• Domination restriction strict

– Nothing inside branch can be moved

– Nothing after a loop exit can be moved

• Can be circumvented through loop normalization

– while-do => if-do-while
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Another example

i := i + 1

z := z + 1

... z ...

z := 5

i := 0

z := 0

i < N ?

Data dependence restriction

• To move S: z := x op y: 

S must be the only assignment to z in loop, and 

no use of z in loop reached by any def other 

than S

• Otherwise may reorder defs/uses

Avoiding data restriction

z := z + 1

z := 0

i := i + 1

i < N ?

... z ...

z := 5

i := 0

Avoiding data restriction

z2 := (z1,z4)

i2 := (i1,i3)

z3 := z2 + 1

z4 := 0

i3 := i2 + 1

i3 < N ?

... z4 ...

z1 := 5

i1 := 0

• Restriction unnecessary 

in SSA!!!

• Implementation of phi 

nodes as moves will 

cope with re-ordered 

defs/uses

Summary of Data dependencies

• We’ve seen SSA, a way to encode data dependencies better than 

just def/use chains

– makes CSE easier

– makes loop invariant detection easier

– makes code motion easier

• Now we move on to looking at how to encode control 

dependencies

Control Dependencies 

• A node (basic block) Y is control-dependent on another X iff X 

determines whether Y executes

– there exists a path from X to Y s.t. every node in the path other than X and 

Y is post-dominated by Y

– X is not post-dominated by Y
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Control Dependencies 

• A node (basic block) Y is control-dependent on another X iff X 

determines whether Y executes

– there exists a path from X to Y s.t. every node in the path other than X and 

Y is post-dominated by Y

– X is not post-dominated by Y

Example

Example Control Dependence Graph

• Control dependence graph: Y descendent of X iff Y is control 

dependent on X

– label each child edge with required condition

– group all children with same condition under region node

• Program dependence graph: super-impose dataflow graph (in 

SSA form or not) on top of the control dependence graph

Example Example
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Another example Another example

Another example Summary of Control Depence Graph

• More flexible way of representing control-depencies than CFG 

(less constraining)

• Makes code motion a local transformation

• However, much harder to convert back to an executable form

Course summary so far

• Dataflow analysis

– flow functions, lattice theoretic framework, optimistic iterative 

analysis, precision, MOP

• Advanced Program Representations

– SSA, CDG, PDG

• Along the way, several analyses and opts

– reaching defns, const prop & folding, available exprs & CSE, 

liveness & DAE, loop invariant code motion

• Pointer analysis

– Andersen, Steensguaard, and long the way: flow-insensitive 

analysis

• Next: dealing with procedures
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