Another example: constant prop

Another example: constant prop

« SetD=
Fyonfin) =

vl =

o« SetD=2{x»Nl|xevasANeZz}

[n
Fyon(n) =in—{X = *}U{X =N}
out
[in
X:i=Yop2 Fx=yopz(in)=in—{X —=*}u
[out {X=N[(Y=N)einn

(Z—-Ny)eina
N=N;opN,}

Another example: constant prop

Fyom (i) =

P

Another example: constant prop

Fy.-w(in)=in—{X—*}
U{X—=N |V Z e may-point-to(Y) .
(Z—N)ein}

Fux=y(in) =in—{Z — *| Z € may-point(X) }
U{Z — N|Z e must-point-to(X) A
Y—Nein}
U{ZN|[(Y>N)einA
(Z—N)ein}

Another example: constant prop

[

Faxicov s (in) =

out

| in
oo

out

Another example: constant prop

[n

Fux iz oy +42(iN) = Fa oy = ozic = a4 by ox = c(iN)

out

oo =0

out

Another example: constant prop

l in
s: if (...)
out[0] out[1]

inf0] in[1]
out

Lattice

(D5 L T,un=

7 8
Lattice Example
« D,E, L, T,u,nN)=
(22, 2,A,0,n,U)
whereA={x —>N|xeVarsA\NeZ}
9 10
Another Example Another Example starting at top
11 12

Back to lattice

* (D,E L, T,u M=
(2%, 2,A,0,n,U)
whereA={x —-N|xeVars\NeZ}

« What's the problem with this lattice?

Back to lattice

*(OELTum=
(2", 2,A0,n,U)
whereA={x —+N|xeVars\NeZ}

» What's the problem with this lattice?

« Lattice is infinitely high, which means we can’t guarantee
termination

13

14

Better lattice

« Suppose we only had one variable

Better lattice

+ Suppose we only had one variable
~

. //T\\\
\\\\///

L AU pomtl canfants

Mot coutont

«+ D={l, T}uZz
+ VieZ.1lEiAIET
+ height=3

15

16

For all variables

« Two possibilities
« Option 1: Tuple of lattices

« Given lattices (Dy, &, Ly, Ty, Uy, M) ... (Dy, Epy Ly Ty Uy, M) Create:

tuple lattice D" =

For all variables

+ Two possibilities
+ Option 1: Tuple of lattices

+ Given lattices (Dy, &y, Ly, Tq, Us, My) ... (D, Epy Ly, Ty, U, 1) Create:

tuple lattice D" = ((D; x ... x D), &, 1, T, U, 1) where
L= (Lo Ly

T=(Ty e T

@y, @) U(by, .., by) = (ay Uy by, ..y @, Uy by)

(@y, s 3) 11 (By, ey b) = (@3 My by, ooy @ 1, by)
height = height(D,) + ... + height(D,)

17

18

For all variables

« Option 2: Map from variables to single lattice

« Given lattice (D, C,, L, Ty, L, My) and a set V, create:

map lattice V—+D=(V - D, C, L, T, U, M)

L= Av> L
T: /\\/) /—I
MU Ny s (V) U g y)

i Loty & Vv, (L (V)

19

Back to example

in
X :=Yop 2
Tou

Fx = YopZ(in) =

20

Back to example

Fx=vop(in) = in [X = in(Y) 6p in(2)]

where a oAp b=

General approach to domain design

» Simple lattices:
— boolean logic lattice
— powerset lattice

— incomparable set: set of incomparable values, plus top and bottom (eg
const prop lattice)

— two point lattice: just top and bottom

» Use combinators to create more complicated lattices

g1} - T — tuple lattice constructor
L T — map lattice constructor
L
A dapdy T
- 7t T T
21 22
May vs Must May vs must
« Has to do with definition of computed info
May Must
« Set of x — y must-point-to pairs most optimistic
— if we compute x — y, then, then during program execution, X must point to (bottom)
y most conservative
)) (top)
« Set of x— y may-point-to pairs afe
— if during program execution, it is possible for x to point to y, then we must
compute X — y merge

23

24

May vs must

May Must
most optimistic empty set full set
(bottom)
most conservative full set empty set
(top)
safe overly big overly small
merge U n

25

Common Sub-expression Elim

+ Domain:

» Want to compute when an expression is available in a var

26

Common Sub-expression Elim

* Want to comp

« Domain:

ute when an expression is available in a var

Flow functions

X =vopz Fx=vopz(in) =
out
g:ﬂ)(;:(: [« ela, ,Ec F<n1}
Ln .
0:2° P
(L - J‘ out
T
ue
27 28
Flow functions Example

—{*—=..X..}u
{X=YopZ | X#YAX=Z}

Fy.-y(in)=in—{X —*}
—{*> . X..}U
{X—=E|Y—>E€in}

29

30

Direction of analysis

« Although constraints are not directional, flow functions are
« All flow functions we have seen so far are in the forward direction

« In some cases, the constraints are of the form
in = F(out)

« These are called backward problems.

« Example: live variables
— compute the set of variables that may be live

Live Variables

» Avariable is live at a program point if it will be used before being
redefined

» Avariable is dead at a program point if it is redefined before being
used

31

32

Example: live variables

* SetD =
« Lattice: (D, C, L, T,u,M) =

Example: live variables

+ SetD=2Vas
« Lattice: (D, C, L, T, U, M) = (2Vars, C, @ ,Vars, U, N)

X :

Y op Z Fx.=vopz(OUt) =
l out

33

34

Example: live variables

. SetD=2Vars
« Lattice: (D, C, 1, T, U, M) = (2Vas, C, § ,Vars, U, N)

Frevop2(oU) = 0ut—{X}U{Y, 2}

Example: live variables

35

36

Example: live variables

How can we remove
thex := x + 1 stmt?

Revisiting assignment

[in

out

Fx =y op2(0Ut) = 0Ut = { X }U{ Y, 2}

37

38

Revisiting assignment

X :=Y op 2 Fx.=vopz(Out) =out—{ X} U {Y, Z}

lDU! W,l‘x}u
Kgoal? @ b 23

Theory of backward analyses

» Can formalize backward analyses in two ways
» Option 1: reverse flow graph, and then run forward problem

» Option 2: re-develop the theory, but in the backward direction

39

40

Precision

« Going back to constant prop, in what cases would we lose
precision?

Precision

» Going back to constant prop, in what cases would we lose
precision?

x =5 if (L) o
if (<expr>) { x = -1
x i= } else
) x =1

ox oL }

y = x % x
where <expr> is if (p) { [ERES AP
equiv to false yi=x+1

} else {

yi=x+2

41

42

Precision

The first problem: Unreachable code
— solution: run unreachable code removal before

— the unreachable code removal analysis will do its best, but may not
remove all unreachable code

The other two problems are path-sensitivity issues
— Branch correlations: some paths are infeasible
— Path merging: can lead to loss of precision

MOP: meet over all paths

« Information computed at a given point is the meet of the
information computed by each path to the program point

if (...) o
x := -1
} else

x =1
}

y i=x *x
LY.

43 44
MOP MOP vs. dataflow
« For a path p, which is a sequence of statements [s,, ..., S,] , * MOP is the “best” possible answer, given a fixed set of flow
define: Fy(in) = Fg (...Fg (in) ...) functions
n 1))
+ In other words: Fp - h‘ o o hn — This means that MOP C dataflow at edge in the CFG
« Given an edge e, let paths-to(e) be the (possibly infinite) set of : :gf%igfrar:aMnOP;hg;)t computable (because there can be
paths that lead to e Yy y p :) .
— vs dataflow which is generally computable (if flow fns are monotonic and
+ Given an edge e, MOP(e) = u FplL) height of lattice is finite)
P& podn o le) . .
» And we saw in our example, in general,
MOP = dataflow
« For us, should be called JOP (ie: join, not meet) *
45 46

MOP vs. dataflow

« However, it would be great if by imposing some restrictions on the
flow functions, we could guarantee that dataflow is the same as
MOP. What would this restriction be?

Dataflow MOP

x = =1;

-1; x : ;
N/ T
Merge

g N
LY

x * x;

<

MOP vs. dataflow

» However, it would be great if by imposing some restrictions on the
flow functions, we could guarantee that dataflow is the same as
MOP. What would this restriction be?

« Distributive problems. A problem is distributive if:

va,b.FauUb)=F@)UF(b)

« If flow function is distributive, then MOP = dataflow

47

48

Summary of precision

Dataflow is the basic algorithm

To basic dataflow, we can add path-separation

— Get MOP, which is same as dataflow for distributive problems

— Variety of research efforts to get closer to MOP for non-distributive
problems

To basic dataflow, we can add path-pruning

— Get branch correlation

To basic dataflow, can add both:
— meet over all feasible paths

49

