Formalization of DFA using lattices

1

Project

How is the project going?
A. Easy, getting it all done quickly and easily
B. Challenging but doable
C. Very challenging, I'm having a hard time
D. Have no clue where to start

Project
How is the project going?
A. Easy, getting it all done quickly and easily
B. Challenging but doable
C. Very challenging, l'm having a hard time
D. Have no clue where to start

Getting help
Are you getting enough help and support?
A. Yes
B. No because I didn't realize there were office hours
C. No because the office hours are at a time that I can't make
D. No because l'm embarrassed to ask for help
E. No because of some other reason

3
4

Using lattices

- We formalize our domain with a powerset lattice
- But more generally ANY lattice
- What should be top and what should be bottom?

Using lattices

- Unfortunately:
- dataflow analysis community has picked one direction
- abstract interpretation community has picked the other
- We will work with the abstract interpretation direction
- Bottom is the most precise (optimistic) answer, Top the most imprecise (conservative)

Direction of lattice

- Always safe to go up in the lattice
- Can always set the result to T
- Hard to go down in the lattice
- Bottom will be the empty set in reaching defs

7

Worklist algorithm using lattices

let m: map from edge to computed value at edge
let worklist: work list of nodes
$\mathrm{m}(\mathrm{e}):=\perp$
for each node n do
worklist. add (n)
while (worklist.empty.not) do
let $\mathrm{n}:=$ worklist.remove any;
let info_in :=m(n.incoming_edges);
let info_out :=F(n, info-in);
for $i:=0$ info out.length d
let new_info $:=m(n$. outgoing_edges [i])
if (m (. outgoingoout[i]
if $(m$ (n.outgoing_edges $[i]) \neq$ new_info]) worklist.add (n . outgoing_edges [i$]$.dst)

9
10

Termination of this algorithm?	$S\{1,7,3\}$			
- For reaching definitions, it terminates...				
- Why?				
- lattice is finite	Can we loosen this requirement?			
- Yes, we only require the lattice to have a finite height				
- Height of a lattice: length of the longest ascending or descending				
chain	A. $\|\mathrm{S}\|-1$		- Height of lattice $\left(2^{\mathrm{S}}, \subseteq\right)=? ?$	C. $\|\mathrm{S}\|$
:---	:---			
	C. $\|\mathrm{S}\|+1$			

11

Termination of this algorithm?

- For reaching definitions, it terminates...
-Why?
- lattice is finite
- Can we loosen this requirement?

Termination of this algorithm?

- For reaching definitions, it terminates...
- Why?
- lattice is finite
- Can we loosen this requirement?
- Yes, we only require the lattice to have a finite height
- Height of a lattice: length of the longest ascending or descending chain
- Height of lattice $\left(2^{\mathrm{S}}, \subseteq\right)=|\mathrm{S}|$

13

Fixed points

- Recall, we are computing m, a map from edges to dataflow information
- Define a global flow function F as follows: F takes a map m as a parameter and returns a new map m^{\prime}, in which individual local

15
16

Fixed points

- Formally:
 ($\tilde{\perp}$)
- Outer join has same role here as in worklist algorithm: guarantee that results keep increasing
- BUT: if the sequence $\mathrm{F}^{\mathrm{i}}(\widetilde{\perp})$ for $\mathrm{i}=0,1,2 \ldots$ is increasing, we can get rid of the outer join!

Little bit more about monotonicity - Definition: F is monotonic if and only if: $-\forall a, b \cdot a \sqsubseteq b \Rightarrow F(a) \sqsubseteq F(b)$ - Which of the following is true: A. If F is monotonic then $\forall \mathrm{a} . \mathrm{F}(\mathrm{a}) \sqsubseteq \mathrm{a}$ B. If F is monotonic then $\forall \mathrm{a} . \mathrm{a} \sqsubseteq \mathrm{F}(\mathrm{a})$ C. If $\forall \mathrm{a} . \mathrm{F}(\mathrm{a}) \sqsubseteq \mathrm{a}$ then F is monotonic D. If $\forall a \cdot a \sqsubseteq F(a)$ then F is monotonic E. None of the above or more than one of the above

19

$$
\begin{aligned}
& \tilde{\perp} \tilde{\sqsubseteq} F(\tilde{L}) \\
& F(\tilde{I}) \text { 巨 } F(F(\tilde{I})) \\
& F^{k}(\underline{I}) \subseteq F^{h+1}(\Upsilon) \\
& F^{k+1}(\tilde{L}) \subseteq F^{k+2}(\tilde{I})
\end{aligned}
$$

21

Fixed points	
	$\begin{aligned} & \tilde{I} \tilde{\underline{L}} F(\tilde{L}) \\ & F\left(\tilde{I} \subseteq F(F(\tilde{I}))^{d}\right. \\ & F^{k}(\tilde{I}) \succeq F^{k+1}(\tilde{I}) \\ & F^{k+1}(\tilde{I}) \subseteq F^{k+2}(\tilde{L}) \end{aligned}$

22

Another benefit of monotonicity

- Suppose Marsians came to earth, and miraculously give you a fixed point of F, call it $f p$
- Then:

$\{a\}\langle b$

Another benefit of monotonicity

25
26

- We first defined a "global" flow function F, and then expressed our algorithm as a fixed point computation

Recap

- Let's do a recap of what we've seen so far
- Started with worklist algorithm for reaching definitions

Worklist algorithm for reaching defns

let m : map from edge to computed value at edge
let worklist: work list of nodes
for each edge e in CFG do
$\mathrm{m}(\mathrm{e}):=\emptyset$
for each node n do
worklist. add (n)
while (worklist.empty.not) do
let n := worklist.remove any
let info_in :=m(n.incoming_edges)
let info_out :=F(n, info-in);
for $i:=0$ info out.length
let new_info $:=m(n$.outgoing_edges[i]) U
info_out[i]
if $(m$ (n.outgoing_edges $[i]) \neq$ new_info]) worklist.add (n . outgoing_edges [i$]$.dst)

27
28

Next step: removed outer join

- Wanted to remove the outer join, while still providing termination guarantee
- To do this, we re-expressed our algorithm more formally

Worklist algorithm for reaching defns
let m : map from edge to computed value at edge let worklist: work list of nodes
for each node n do workk ist.ad (n)
while (worklist.empty.not) do let $\mathrm{n}:=$ worklist.remove any let info_in $:=m$ (n.incoming_edges) ; let info-out $:=F(n$, info_in) (
$\mathrm{m}(\mathrm{n}$.outgoing_edges[i]) $:=$ new_info; worklist.add(n. outgoing edges[i].dst)

Generalized algorithm using lattices

let m : map from edge to computed value at edge let worklist: work list of nodes $\mathrm{m}(\mathrm{e}) \quad:=\perp$
for each node n do
worklist. add (n)
while (worklist.empty.not) do
let $\mathrm{n}:=$ worklist.remove_any:
let info_in :=m(n.incoming_edges)
let info_out :=F(n, info_in);
for i : $=0$.. info_out.length do
let new_info $:=m(n$.outgoing_edges [i]) U
if (m(n.outgoinfo_out[i]
if $(\mathrm{m}(\mathrm{n}$. outgoing_edges $[\mathrm{i}]) \mathrm{F}$ new_info] worklist.add (n. outgoing_edges $\overline{[i]}$.dst)

Guarantees

- If F is monotonic, don't need outer join
- If F is monotonic and height of lattice is finite: iterative algorithm terminates
- If F is monotonic, the fixed point we find is the least fixed point.

31

33
Graphically

What about if we start at top?

- What if we start with $\widetilde{T}: F(\widetilde{T}), F(F(\widetilde{T})), F(F(F(\widetilde{T})))$
- We get the greatest fixed point
- Why do we prefer the least fixed point? - More precise

32

34

35

Graphically, another way

