

1

Getting help

Are you getting enough help and support?

A. Yes

- B. No because I didn't realize there were office hours
- C. No because the office hours are at a time that I can't make
- D. No because I'm embarrassed to ask for help
- E. No because of some other reason

2

4

Project

How is the project going?

- A. Easy, getting it all done quickly and easily
- B. Challenging but doable
- C. Very challenging, I'm having a hard time
- D. Have no clue where to start

Recall worklist algorithm

let m: map from edge to computed value at edge
let worklist: work list of nodes

```
for each edge e in CFG do
m(e) := Ø
```

for each node n do worklist.add(n)

3

Using lattices

- · We formalize our domain with a powerset lattice
- · But more generally ANY lattice
- · What should be top and what should be bottom?

Using lattices

- · We formalize our domain with a powerset lattice
- · But more generally ANY lattice
- · What should be top and what should be bottom?
- · Does it matter? It matters because, as we've seen, there is a notion of approximation, and this notion shows up in the lattice

Using lattices

- Unfortunately:
 - dataflow analysis community has picked one direction
 - abstract interpretation community has picked the other
- · We will work with the abstract interpretation direction
- Bottom is the most precise (optimistic) answer, Top the most imprecise (conservative)

L 7

Direction of lattice

- · Always safe to go up in the lattice
- + Can always set the result to \top
- · Hard to go down in the lattice
- · Bottom will be the empty set in reaching defs

8

9

- · For reaching definitions, it terminates...
- Why?
- lattice is finite
- · Can we loosen this requirement?

10

Termination of this algorithm?

- · For reaching definitions, it terminates...
- Why?
 - lattice is finite
- Can we loosen this requirement?
 Yes, we only require the lattice to have a finite height
- Height of a lattice: length of the longest ascending or descending chain
- Height of lattice (2^S, \subseteq) = | S |

13

Even more formal

- To reason more formally about termination and precision, we reexpress our worklist algorithm mathematically
- · We will use fixed points to formalize our algorithm

14

Fixed points

- Recall, we are computing m, a map from edges to dataflow information
- Define a global flow function F as follows: F takes a map m as a parameter and returns a new map m', in which individual local flow functions have been applied

Fixed points

- We want to find a fixed point of F, that is to say a map m such that m = F(m)
- · Approach to doing this?
- Define $\widetilde{\perp}$, which is \perp lifted to be a map: $\widetilde{\perp} = \lambda e. \perp$
- Compute F(⊥), then F(F(⊥)), then F(F(F(⊥))), ... until the result doesn't change anymore

15

16

- $\forall a, b . a \sqsubseteq b \Rightarrow F(a) \sqsubseteq F(b)$
- Which of the following is true:
 - A. If F is monotonic then $\forall a \cdot F(a) \sqsubseteq a$ B. If F is monotonic then $\forall a \cdot a \sqsubseteq F(a)$
 - B. If F is monotonic then $\forall a \cdot a \sqsubseteq F(a)$
 - C. If $\forall a . F(a) \sqsubseteq a$ then F is monotonic D. If $\forall a . a \sqsubseteq F(a)$ then F is monotonic

Another benefit of monotonicity

fixed point of F, call it fp.

· Suppose Marsians came to earth, and miraculously give you a

E. None of the above

19

20

Back to termination

- So if F is monotonic, we have what we want: finite height \Rightarrow termination, without the outer join
- Also, if the local flow functions are monotonic, then global flow function ${\sf F}$ is monotonic

22

23

· Then:

25

Recap

- · Let's do a recap of what we've seen so far
- · Started with worklist algorithm for reaching definitions

26

27

28

Next step: removed outer join

- Wanted to remove the outer join, while still providing termination guarantee
- · To do this, we re-expressed our algorithm more formally
- We first defined a "global" flow function F, and then expressed our algorithm as a fixed point computation

Guarantees

- · If F is monotonic, don't need outer join
- If F is monotonic and height of lattice is finite: iterative algorithm terminates
- If F is monotonic, the fixed point we find is the least fixed point.

30

What about if we start at top?

31

What if we start with T̃: F(T̃), F(F(T̃)), F(F(F(T̃)))

What about if we start at top?

- What if we start with $\stackrel{\sim}{\top}$: $F(\stackrel{\sim}{\top})$, $F(F(\stackrel{\sim}{\top}))$, $F(F(F(\stackrel{\sim}{\top})))$
- · We get the greatest fixed point
- Why do we prefer the least fixed point?
 More precise

32

36