Background material

Relations

- A relation over a set S is a set $R \subseteq S \times S$
 - We write a R b for $(a,b) \in R$
- · A relation R is:
 - reflexive iff
 - $\forall \ a \in S \ . \ a \ R \ a$
 - transitive iff
 - $\forall \ a \in S, \ b \in S, \ c \in S \ . \ a \ R \ b \land b \ R \ c \Rightarrow a \ R \ c$
 - symmetric iff
 - \forall a, b \in S . a R b \Rightarrow b R a
 - anti-symmetric iff

 $\forall a, b, \in S . a R b \Rightarrow \neg(b R a)$

2

Relations

1

- A relation over a set S is a set R \subseteq S \times S
 - We write a R b for (a,b) $\in R$
- A relation R is:
 - reflexive iff
 - $\forall \ a \in S \ . \ a \ R \ a$
 - transitive iff
 - $\forall \ a \in S, b \in S, c \in S \ . \ a \ R \ b \wedge b \ R \ c \Rightarrow a \ R \ c$
 - \forall a \in S, b \in symmetric iff
 - \forall a, b \in S . a R b \Rightarrow b R a
 - anti-symmetric iff
 - \forall a, b, \in S . a R b $\Rightarrow \neg$ (b R a)
 - $\forall \ a,\,b,\in S \ . \ a \ R \ b \wedge b \ R \ a \Rightarrow a = b$

Partial orders

- · An equivalence class is a relation that is:
- · A partial order is a relation that is:

3

4

Partial orders

- An equivalence class is a relation that is:
 - reflexive, transitive, symmetric
- A partial order is a relation that is:
 - reflexive, transitive, anti-symmetric
- A partially ordered set (a poset) is a pair (S, \leq) of a set S and a partial order \leq over the set
- Examples of posets: (2^S, \subseteq), (Z, \leq), (Z, divides) 9 Mud $\theta = 0$

Lub and glb

- Given a poset (S, \leq) , and two elements $a \in S$ and $b \in S$, then the:
 - least upper bound (lub) is an element c such that $a\leq c,\, b\leq c,$ and $\forall\ d\in S$. (a $\leq d\land b\leq d)\Rightarrow c\leq d$
 - greatest lower bound (glb) is an element c such that $c \le a, c \le b$, and $\forall d \in S$. $(d \le a \land d \le b) \Rightarrow d \le c$

2

- Does a lub and glb always exists?
- A. Yes (in this case justify your answer)
- B. No (in this case come up with example where no lub or glb exists)

5

6

Lub and glb

- Given a poset (S, \leq), and two elements $a \in S$ and $b \in S$, then the:
 - least upper bound (lub) is an element c such that $a\leq c,\,b\leq c,$ and $\forall\;d\in S$. (a $\leq d\,\wedge\,b\leq d)\Rightarrow c\leq d$
 - greatest lower bound (glb) is an element c such that $c\leq a,\,c\leq b,$ and $\forall\;d\in S$. (d $\leq a\wedge d\leq b)\Rightarrow d\leq c$
- lub and glb don't always exists:

b c glb of b & c?

Lattices

- A lattice is a tuple (S, \sqsubseteq , \bot , \top , \sqcup , \sqcap) such that:
 - (S, ⊑) is a poset
 - $\ \forall \ a \in S \ . \perp \sqsubseteq a$
 - $\forall \ a \in S \ . \ a \sqsubseteq \top$
 - Every two elements from S have a lub and a glb
 - — □ is the least upper bound operator, called a join
 - $\ \sqcap$ is the greatest lower bound operator, called a meet

ameet and and

7

Examples of lattices

· Powerset lattice

9

Examples of lattices

· Powerset lattice

10

12

8

Examples of lattices

· Booleans expressions

11

Examples of lattices

· Booleans expressions

2

Examples of lattices • Booleans expressions T ::

