

1

Relations

- A relation over a set S is a set $R \subseteq S \times S$
- We write a R b for $(a, b) \in R$
- A relation R is:
- reflexive iff
$\forall \mathrm{a} \in \mathrm{S} . \mathrm{aR} \mathrm{a}$
- transitive iff
$\forall a \in S, b \in S, c \in S . a R b \wedge b R c \Rightarrow a R c$
- symmetric iff
$\forall a, b \in S . a R b \Rightarrow b R a$
- anti-symmetric iff
$\forall a, b, \in S . a R b \Rightarrow \neg(b R a)$
$\forall a, b, \in S . a R b \wedge b R a \Rightarrow a=b$

3
4

Partial orders

- An equivalence class is a relation that is:
- A partial order is a relation that is:
- A relation over a set S is a set $R \subseteq S \times S$
- We write a R b for $(a, b) \in R$
- A relation R is:
- reflexive iff
$\forall a \in S . a R a$
- transitive iff
$\forall a \in S, b \in S, c \in S . a R b \wedge b R c \Rightarrow a R c$
- symmetric iff
$\forall a, b \in S . a R b \Rightarrow b R a$
- anti-symmetric iff

$$
\forall a, b, \in S . a R b \Rightarrow \neg(b R a)
$$

2

7

9

Lattices

- A lattice is a tuple $(\mathrm{S}, \sqsubseteq, \perp, \top, \sqcup, \sqcap)$ such that:
- (S, \sqsubseteq) is a poset
$-\forall a \in S . \perp \sqsubseteq a$
$-\forall a \in S . a \sqsubseteq T$
- Every two elements from S have a lub and a glb
$-\sqcup$ is the least upper bound operator, called a join
$-\Pi$ is the greatest lower bound operator, called a meet
anb áMb

8

10

Examples of lattices

- Powerset lattice

Examples of lattices

- Booleans expressions

$x 5 y$ iff
$A \cdot x \Rightarrow y$
$B Y \Rightarrow x$
$\perp E T$
$F_{a} \underset{\underset{\sim}{r}}{\rightarrow} T_{v}$

11

Examples of lattices

- Booleans expressions

13

Examples of lattices
Booleans expressions
two vas
T
\vdots
\vdots

14

