
Dataflow analysis



Dataflow analysis: what is it?

• A common framework for expressing algorithms that 

compute information about a program

• Why is such a framework useful? 

• Provides a common language, which makes it easier to:

– communicate your analysis to others

– compare analyses

– adapt techniques from one analysis to another

– reuse implementations (eg: dataflow analysis frameworks)



Control Flow Graphs

• For now, we will use a Control Flow Graph representation of 

programs

– each statement becomes a node

– edges between nodes represent control flow

• Later we will see other program representations

– variations on the CFG (eg CFG with basic blocks)

– other graph based representations



x := ...

x := ...

y := ...

y := ...

p := ...

if (...) {

... x ...

x := ...

... y ...

}

else {

... x ...

x := ...

*p := ...

}

... x ...

... y ...

y := ...

y := ...

y := ...

p := ...

... x ...

x := ...

... y ...

... x ...

x := ...

*p := ...

... x ...

... x ...

y := ...

if (...)

Example CFG



An example DFA: reaching definitions

• For each use of a variable, determine what assignments could 

have set the value being read from the variable

• Information useful for:

– performing constant and copy prop

– detecting references to undefined variables

– presenting “def/use chains” to the programmer

– building other representations, like the DFG

• Let’s try this out on an example



1: x := ...

2: y := ...

3: y := ...

4: p := ...

... x ...

5: x := ...

... y ...

... x ...

6: x := ...

7: *p := ...

... x ...

... y ...

8: y := ...

x := ...

y := ...

y := ...

p := ...

... x ...

x := ...

... y ...

... x ...

x := ...

*p := ...

... x ...

... y ...

y := ...

if (...)

Visual sugar



1: x := ...

2: y := ...

3: y := ...

4: p := ...

... x ...

5: x := ...

... y ...

... x ...

6: x := ...

7: *p := ...

... x ...

... y ...

8: y := ...



1: x := ...

2: y := ...

3: y := ...

4: p := ...

... x ...

5: x := ...

... y ...

... x ...

6: x := ...

7: *p := ...

... x ...

... y ...

8: y := ...

What is reaching defn set for x here:

A. { 5 }

B. { 6 }

C. { 5, 6 }

D. { 5, 6, 7 }

E. {5, 6, 7, 1}  



1: x := ...

2: y := ...

3: y := ...

4: p := ...

... x ...

5: x := ...

... y ...

... x ...

6: x := ...

7: *p := ...

... x ...

... y ...

8: y := ...



Safety

• When is computed info safe?

• Recall intended use of this info:

– performing constant and copy prop

– detecting references to undefined variables

– presenting “def/use chains” to the programmer

– building other representations, like the DFG

• Safety:

– can have more bindings than the “true” answer, but can’t miss any



Reaching definitions generalized

• DFA framework geared to computing information at each program 

point (edge) in the CFG

– So generalize problem by stating what should be computed at each 

program point

• For each program point in the CFG, compute the set of definitions 

(statements) that may reach that point

• Notion of safety remains the same



Reaching definitions generalized

• Computed information at a program point is a set of var ! stmt 
bindings
– eg:  { x ! s1, x ! s2, y ! s3 }

• How do we get the previous info we wanted?
– if a var x is used in a stmt whose incoming info is in,

– then: { s | (x ! s) 2 in }

• This is a common pattern
– generalize the problem to define what information should be computed at 

each program point

– use the computed information at the program points to get the original info 
we wanted



1: x := ...

2: y := ...

3: y := ...

4: p := ...

... x ...

5: x := ...

... y ...

... x ...

6: x := ...

7: *p := ...

... x ...

... y ...

8: y := ...

What is reaching defn info computed here 

A. { x→6, y→3, p→4 }

B. { x→6, x→7, y→3, y→7, p→4 }

C. None of the above



1: x := ...

2: y := ...

3: y := ...

4: p := ...

... x ...

5: x := ...

... y ...

... x ...

6: x := ...

7: *p := ...

... x ...

... y ...

8: y := ...



Using constraints to formalize DFA

• Now that we’ve gone through some examples, let’s try to precisely 

express the algorithms for computing dataflow information

• We’ll model DFA as solving a system of constraints

• Each node in the CFG will impose constraints relating information 

at predecessor and successor points

• Solution to constraints is result of analysis



Constraints for reaching definitions

S: X := ...

in

out

S: *P := ...

in

out



Constraints for reaching definitions

• Using may-point-to information:

out = in [ { X ! S | X 2 may-point-to(P) }

• Using must-point-to aswell:

out = in – { X ! S’ | X 2 must-point-to(P)  Æ
S’ 2 stmts }

[ { X ! S | X 2 may-point-to(P) }

S: X := ...

in

out

S: *P := ...

in

out

out = in – { X ! S’ | S’ 2 stmts } [ { X ! S }



Constraints for reaching definitions

S: if (...)

in

out[0] out[1]

merge   

out

in[0] in[1]



Constraints for reaching definitions

S: if (...)

in

out[0] out[1] more generally: 8 i . out [ i ] = in

out [ 0 ] = in Æ
out [ 1 ] = in

merge   

out

in[0] in[1]

more generally: out =  i in [ i ]

out = in [ 0 ]  [ in [ 1 ] 



Flow functions

• The constraint for a statement kind s often have the form: out = 
Fs(in)

• Fs is called a flow function
– other names for it: dataflow function, transfer function

• Given information in before statement s, Fs(in) returns information 
after statement s

• Other formulations have the statement s as an explicit parameter 
to F: given a statement s and some information in, F(s,in) returns 
the outgoing information after statement s



Flow functions, some issues

• Issue: what does one do when there are multiple input edges to a 

node?

• Issue: what does one do when there are multiple outgoing edges 

to a node?



Flow functions, some issues

• Issue: what does one do when there are multiple input edges to a 

node?

– the flow functions takes as input a tuple of values, one value for each 

incoming edge

• Issue: what does one do when there are multiple outgoing edges 

to a node?

– the flow function returns a tuple of values, one value for each outgoing 

edge

– can also have one flow function per outgoing edge



Flow functions

• Flow functions are a central component of a dataflow analysis

• They state constraints on the information flowing into and out of a 

statement

• This version of the flow functions is local

– it applies to a particular statement kind

– we’ll see global flow functions shortly...



Summary of flow functions

• Flow functions: Given information in before statement s, Fs(in) 

returns information after statement s

• Flow functions are a central component of a dataflow analysis

• They state constraints on the information flowing into and out of a 

statement



1: x := ...

2: y := ...

3: y := ...

4: p := ...

if(...)

... x ...

5: x := ...

... y ...

... x ...

6: x := ...

7: *p := ...

merge

... x ...

... y ...

8: y := ...

d0

d1

d2

d3

d5

d6

d7

d9

d10

d11

d13

d14

d15

d16

d12

d4

d8

Back to example
d1 = Fa(d0)

d2 = Fb(d1)

d3 = Fc(d2)

d4 = Fd(d3)

d5 = Fe(d4)

d6 = Fg(d5)

d7 = Fh(d6)

d8 = Fi(d7)

d10 = Fj(d9)

d11 = Fk(d10)

d12 = Fl(d11)

d9 = Ff(d4)

d13 = Fm(d12, d8)

d14 = Fn(d13)

d15 = Fo(d14)

d16 = Fp(d15)

How to find 

solutions for di?



How to find solutions for di?

• This is a forward problem

– given information flowing in to a node, can determine using the flow 

function the info flow out of the node

• To solve, simply propagate information forward through the 

control flow graph, using the flow functions

• What are the problems with this approach? 



1: x := ...

2: y := ...

3: y := ...

4: p := ...

if(...)

... x ...

5: x := ...

... y ...

... x ...

6: x := ...

7: *p := ...

merge

... x ...

... y ...

8: y := ...

d0

d1

d2

d3

d5

d6

d7

d9

d10

d11

d13

d14

d15

d16

d12

d4

d8

First problem
d1 = Fa(d0)

d2 = Fb(d1)

d3 = Fc(d2)

d4 = Fd(d3)

d5 = Fe(d4)

d6 = Fg(d5)

d7 = Fh(d6)

d8 = Fi(d7)

d10 = Fj(d9)

d11 = Fk(d10)

d12 = Fl(d11)

d9 = Ff(d4)

d13 = Fm(d12, d8)

d14 = Fn(d13)

d15 = Fo(d14)

d16 = Fp(d15)

What about the 

incoming 

information?



First problem

• What about the incoming information?

– d0 is not constrained

– so where do we start?

• Need to constrain d0

• Two options:

– explicitly state entry information

– have an entry node whose flow function sets the information on entry 

(doesn’t matter if entry node has an incoming edge, its flow function 

ignores any input)



Entry node

S: entry

out

out = { X ! S | X 2 Formals }



1: x := ...

2: y := ...

3: y := ...

4: p := ...

if(...)

... x ...

5: x := ...

... y ...

... x ...

6: x := ...

7: *p := ...

merge

... x ...

... y ...

8: y := ...

d0

d1

d2

d3

d5

d6

d7

d9

d10

d11

d13

d14

d15

d16

d12

d4

d8

Second problem
d1 = Fa(d0)

d2 = Fb(d1)

d3 = Fc(d2)

d4 = Fd(d3)

d5 = Fe(d4)

d6 = Fg(d5)

d7 = Fh(d6)

d8 = Fi(d7)

d10 = Fj(d9)

d11 = Fk(d10)

d12 = Fl(d11)

d9 = Ff(d4)

d13 = Fm(d12, d8)

d14 = Fn(d13)

d15 = Fo(d14)

d16 = Fp(d15)

d0 = Fentry()

Which order to 

process nodes in?



Second problem

• Which order to process nodes in?

• Sort nodes in topological order
– each node appears in the order after all of its predecessors

• Just run the flow functions for each of the nodes in the topological 
order

• What’s the problem now?



Second problem, prime

• When there are loops, there is no topological order!

• What to do?

• Let’s try and see what we can do



1: x := ...

2: y := ...

3: y := ...

4: p := ...

... x ...

5: x := ...

... y ...

... x ...

6: x := ...

7: *p := ...

... x ...

... y ...

8: y := ...



1: x := ...

2: y := ...

3: y := ...

4: p := ...

... x ...

5: x := ...

... y ...

... x ...

6: x := ...

7: *p := ...

... x ...

... y ...

8: y := ...



Worklist algorithm

• Initialize all di to the empty set

• Store all nodes onto a worklist

• while worklist is not empty:

– remove node n from worklist

– apply flow function for node n

– update the appropriate di, and add nodes whose inputs have changed 

back onto worklist



Worklist algorithm

let m: map from edge to computed value at edge

let worklist: work list of nodes

for each edge e in CFG do

m(e) := ;

for each node n do

worklist.add(n)

while (worklist.empty.not) do

let n := worklist.remove_any;

let info_in := m(n.incoming_edges);

let info_out := F(n, info_in);

for i := 0 .. info_out.length-1 do

if (m(n.outgoing_edges[i])  info_out[i])

m(n.outgoing_edges[i]) := info_out[i];

worklist.add(n.outgoing_edges[i].dst);



Order of nodes

• Topological order assuming back-edges have been removed

• Reverse depth-first post-order

• Use an ordered worklist



1: x := ...

2: y := ...

3: y := ...

4: p := ...

... x ...

5: x := ...

... y ...

... x ...

6: x := ...

7: *p := ...

... x ...

... y ...

8: y := ...



Termination

• Is termination important? In other words, can we stop the 

algorithm at any point?

A. Yes

B. No



Termination

• Assuming we’re doing reaching defs, let’s try to guarantee that the 

worklist loop terminates, regardless of what the flow function F 

does

while (worklist.empty.not) do

let n := worklist.remove_any;

let info_in := m(n.incoming_edges);

let info_out := F(n, info_in);

for i := 0 .. info_out.length-1 do

if (m(n.outgoing_edges[i])  info_out[i])

m(n.outgoing_edges[i]) := info_out[i];

worklist.add(n.outgoing_edges[i].dst);



Termination

• Assuming we’re doing reaching defs, let’s try to guarantee that the 

worklist loop terminates, regardless of what the flow function F 

does

while (worklist.empty.not) do

let n := worklist.remove_any;

let info_in := m(n.incoming_edges);

let info_out := F(n, info_in);

for i := 0 .. info_out.length-1 do

let new_info := m(n.outgoing_edges[i]) [
info_out[i];

if (m(n.outgoing_edges[i])  new_info])

m(n.outgoing_edges[i]) := new_info;

worklist.add(n.outgoing_edges[i].dst);



Structure of the domain

• We’re using the structure of the domain outside of the flow 

functions

• In general, it’s useful to have a framework that formalizes this 

structure

• We will use lattices


