Dataflow analysis




Dataflow analysis: what Is It?

« A common framework for expressing algorithms that
compute information about a program

* Why Is such a framework useful?

* Provides a common language, which makes it easier to:
— communicate your analysis to others
— compare analyses
— adapt techniques from one analysis to another
— reuse implementations (eg: dataflow analysis frameworks)



Control Flow Graphs

* For now, we will use a Control Flow Graph representation of
programs
— each statement becomes a node
— edges between nodes represent control flow

« Later we will see other program representations
— variations on the CFG (eg CFG with basic blocks)
— other graph based representations
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An example DFA: reaching definitions

« For each use of a variable, determine what assignments could
nave set the value being read from the variable

 Information useful for:
— performing constant and copy prop
— detecting references to undefined variables
— presenting “def/use chains” to the programmer
— building other representations, like the DFG

« Let’s try this out on an example
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What is reaching defn set for x here:

A.{5}
B.{6}
C.{5,6}
D.{5,6,7)}
E.{5, 6,7, 1}
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Safety

 When is computed info safe?

* Recall intended use of this info:
— performing constant and copy prop
— detecting references to undefined variables
— presenting “def/use chains” to the programmer
— building other representations, like the DFG

« Safety:
— can have more bindings than the “true” answer, but can’t miss any



Reaching definitions generalized

 DFA framework geared to computing information at each program
point (edge) in the CFG
— So generalize problem by stating what should be computed at each
program point

* For each program point in the CFG, compute the set of definitions
(statements) that may reach that point

* Notion of safety remains the same



Reaching definitions generalized

« Computed information at a program point is a set of var — stmt
bindings

—eg: {X—S,X—>S, Y —S;}

 How do we get the previous info we wanted?

— If a var x Is used in a stmt whose incoming info is in,
—then: {s|(x —s) €in}

« This Is a common pattern

— generalize the problem to define what information should be computed at
each program point

— use the computed information at the program points to get the original info
we wanted
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What is reaching defn info computed here
A. { x—6, y—3, p—4}

B. { x—6, x—7,y—3, y—7, p—4}

C. None of the above
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Using constraints to formalize DFA

Now that we've gone through some examples, let’s try to precisely
express the algorithms for computing dataflow information

We'll model DFA as solving a system of constraints

Each node in the CFG will iImpose constraints relating information
at predecessor and successor points

Solution to constraints is result of analysis



Constraints for reaching definitions




Constraints for reaching definitions
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Constraints for reaching definitions
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Constraints for reaching definitions
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Flow functions

 The constraint for a statement kind s often have the form: out =
F.(in)

* F,Is called a flow function
— other names for it: dataflow function, transfer function

« Given information in before statement s, F,(in) returns information
after statement s

« Other formulations have the statement s as an explicit parameter
to F: given a statement s and some information in, F(s,in) returns
the outgoing information after statement s



Flow functions, some issues

 |ssue: what does one do when there are multiple input edges to a
node?

 |ssue: what does one do when there are multiple outgoing edges
to a node?



Flow functions, some issues

 |ssue: what does one do when there are multiple input edges to a

node?
— the flow functions takes as input a tuple of values, one value for each
Incoming edge

 |ssue: what does one do when there are multiple outgoing edges

to a node?
— the flow function returns a tuple of values, one value for each outgoing
edge
— can also have one flow function per outgoing edge



Flow functions

* Flow functions are a central component of a dataflow analysis

* They state constraints on the information flowing into and out of a
statement

* This version of the flow functions is local
— It applies to a particular statement kind
— we’ll see global flow functions shortly...



Summary of flow functions

* Flow functions: Given information in before statement s, F.(in)
returns information after statement s

* Flow functions are a central component of a dataflow analysis

* They state constraints on the information flowing into and out of a
statement
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How to find solutions for d,?

* This Is a forward problem

— given information flowing in to a node, can determine using the flow
function the info flow out of the node

* To solve, simply propagate information forward through the
control flow graph, using the flow functions

 What are the problems with this approach?
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First problem

« What about the incoming information?
— d, IS not constrained
— so where do we start?

* Need to constrain d,

* Two options:
— explicitly state entry information

— have an entry node whose flow function sets the information on entry
(doesn’t matter if entry node has an incoming edge, its flow function
ignores any input)



Entry node
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Second problem

Which order to process nodes in?

Sort nodes in topological order
— each node appears in the order after all of its predecessors

Just run the flow functions for each of the nodes in the topological
order

What's the problem now?



Second problem, prime

 When there are loops, there is no topological order!
 What to do?

» Let's try and see what we can do
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Worklist algorithm

* Initialize all d; to the empty set
e Store all nodes onto a worklist

* while worklist is not empty:
— remove node n from worklist
— apply flow function for node n

— update the appropriate d,, and add nodes whose inputs have changed
back onto worklist



Worklist algorithm

let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
m(e) := 0

for each node n do
worklist.add (n)

while (worklist.empty.not) do
let n := worklist.remove_ any;
let info in := m(n.incoming edges) ;
let info out := F(n, info_in);
for i := 0 .. info out.length-1 do
if (m(n.outgoing edges[i]) # info out[i])
m(n.outgoing edges[i]) := info out[i];
worklist.add(n.outgoing edges[i] .dst);



Issues with worklist algorithm




Two issues with worklist algorithm

* Ordering
— In what order should the original nodes be added to the worklist?
— What order should nodes be removed from the worklist?

* Does this algorithm terminate?



Order of nodes

* Topological order assuming back-edges have been removed
* Reverse depth-first post-order

 Use an ordered worklist






Termination

* Why Is termination important?

« Can we stop the algorithm in the middle and just say we're done...

* NO: we need to run it to completion, otherwise the results are not
safe...



Termination

« Assuming we're doing reaching defs, let’s try to guarantee that the
worklist loop terminates, regardless of what the flow function F
does

while (worklist.empty.not) do
let n := worklist.remove_ any;
let info in := m(n.incoming edges) ;
let info out := F(n, info_in);
for i := 0 .. info out.length-1 do
if (m(n.outgoing edges[i]) # info out[i])
m(n.outgoing edges[i]) := info out[i];
worklist.add(n.outgoing edges[i] .dst);



Termination

« Assuming we're doing reaching defs, let’s try to guarantee that the

worklist loop terminates, regardless of what the flow function F
does

while (worklist.empty.not) do
let n := worklist.remove_ any;
let info in := m(n.incoming edges) ;
let info out := F(n, info_in);
for i := 0 .. info out.length-1 do
let new _info := m(n.outgoing edges[i]) U
info out[i];
if (m(n.outgoing edges[i]) # new_info])
m(n.outgoing edges[i]) := new info;
worklist.add(n.outgoing edges[i] .dst);



Structure of the domain

 We're using the structure of the domain outside of the flow
functions

* |In general, it's useful to have a framework that formalizes this
structure

« We will use lattices



