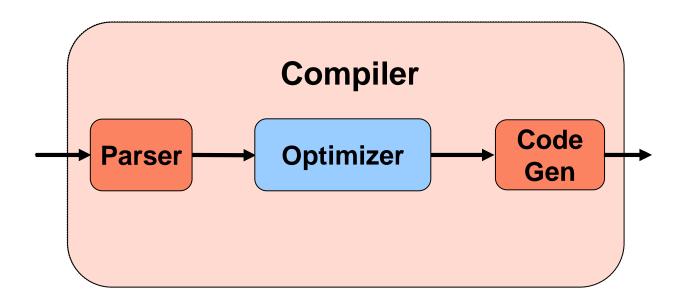

Advanced Compiler Design

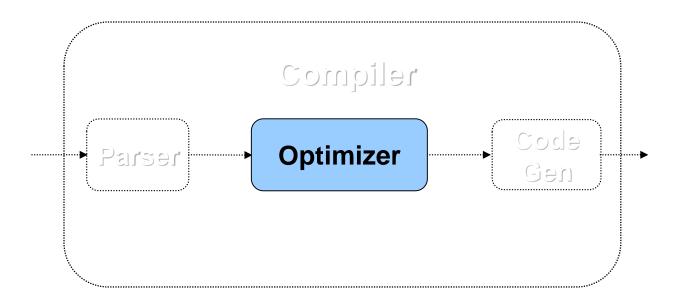
CSE 231


Instructor: Sorin Lerner

Why Study Compilers?

Let's look at a compiler

Let's look at a compiler



Advanced Optimizer Design

CSE 231

Instructor: Sorin Lerner

What does an optimizer do?

- 1. Compute information about a program
- 2. Use that information to perform program transformations

(with the goal of improving some metric, e.g. performance)

What do these tools have in common?

- Bug finders
- Program verifiers
- Code refactoring tools
- Garbage collectors
- Runtime monitoring system
- And... optimizers

What do these tools have in common?

- Bug finders
- Program verifiers
- Code refactoring tools
- Garbage collectors
- Runtime monitoring system
- And... optimizers

They all analyze and transform programs

We will learn about the techniques underlying all
these tools

Program Analyses, Transformations, and Applications

CSE 231

Instructor: Sorin Lerner

Course goals

- Understand basic techniques
 - cornerstone of a variety of program analysis tools
 - useful no matter what your future path

- Get a feel for compiler research/implementation
 - useful for research-oriented students
 - useful for implementation-oriented students

Course topics

Representing programs

Analyzing and transforming programs

Applications of these techniques

Course topics (more details)

- Representations
 - Abstract Syntax Tree
 - Control Flow Graph
 - Dataflow Graph
 - Static Single Assignment
 - Control Dependence Graph
 - Program Dependence Graph
 - Call Graph

Course topics (more details)

- Analysis/Transformation Algorithms
 - Dataflow Analysis
 - Interprocedural analysis
 - Pointer analysis

Course topics (more details)

- Applications
 - Scalar optimizations
 - Loop optimizations
 - Object oriented optimizations
 - Program verification
 - Bug finding

Course pre-requisites

- No compilers background necessary
- No familiarity with lattices
 - I will review what is necessary in class
- Know C/C++ or an object oriented language
 - Project will be in C++
- Standard ugrad cs curriculum likely enough
 - Talk to me if you're concerned

Course work

- In-class midterm (25%)
 - Date posted on web site
- Final (35%-40%)
 - Date posted on web site
- Course project (35%)
- Participation through clickers (0%-5%)

Clickers

- Participation in a lecture is defined by responding to 75% of iclicker questions in that lecture.
- If you participate in 80% of lectures, you receive 100% for 5% of your grade (your participation grade).
- If you participate in fewer than 80% of lectures, your final exam score replaces your lost participation points.

Clickers

Three examples:

- ->=80% lecture participation: You receive 100% for your 5% participation grade and your final exam is worth 35% of your grade.
- 0% lecture participation: Your participation portion of your final grade is 0% and your final exam is worth 40% of your grade.
- 60% lecture participation: You receive 100% for 3% (60% of 5%) of your final grade for participation. Your final exam is worth 37% (35%+2%) of your final grade.

Clickers

- Clicker questions will start this week (week 1)
- Clicker attendance will start week 2
- Bookstore and Amazon sells clickers

Course project

- Goal of the project
 - Get some hands on experience with compilers
 - Two options, most will do option 1
- Option 1: LLVM project
 - Implement some analyses in LLVM, three milestones
 - Hand in your code and it's auto-graded
- Option 2: Research (by instructor approval)
 - Pick some interesting idea, and try it out
 - Proposals due at the beginning of the second week
 - Can leverage your existing research

LLVM Project

- M1: Simple instrumentation
- M2: Intraprocedural Analysis framework
- M3, Implement Analyses in framework
- M4: Interprocedural Analysis
- You will extend LLVM. This will require C++
 - If you don't know C++ or any object oriented languages, you should probably drop the class
- To be done alone

Research Project

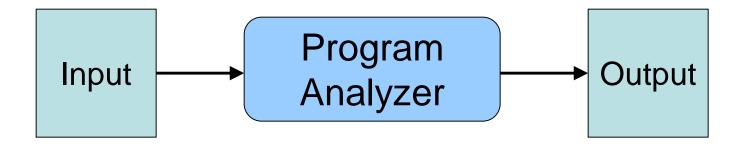
- Requires instructor approval
 - You need to come up with your own idea...
 - ... by the end of week 1
 - Most students doing this will be PhD students
 - It's ok to leverage or overlap with existing research
- To be done alone
- I envision at most 10 people doing this

Readings

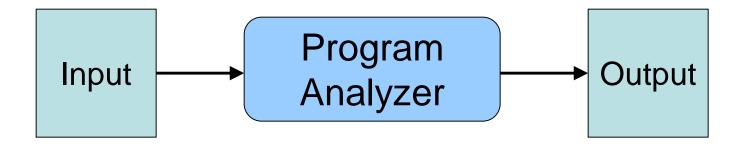
- Paper readings throughout the quarter
- Seminal papers and state of the art
- Gives you historical perspective
- Shows you lineage from idea to practice

Administrative info

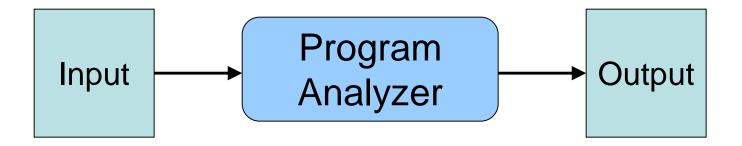
- Class web page is up
 - https://ucsd-pl.github.io/cse231/wi20/
 - (or Google "Sorin Lerner", follow "Teaching Now")
 - Will post lectures, readings, project info, etc.

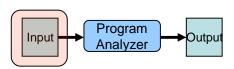

- Piazza link on web page
 - Use for questions, answers
 - Especially LLVM/project Q&A

Academic Integrity

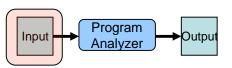

- Governed by Policy on Integrity of Scholarship (http://senate.ucsd.edu/Operating-Procedures/Senate-Manual/Appendices/2)
- Allegations are handled by Academic Integrity Office (https://students.ucsd.edu/academics/academic-integrity)
- Academic penalty for cheating in 231 will result grade reduction, up to and including failing the class
- Cheaters may be subject to additional administrative sanctions
- Make sure your code is not publicly visible, otherwise you will be found responsible

Questions?

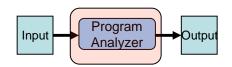

Program Analyzer Issues (discuss)


Program Analyzer Issues (discuss)

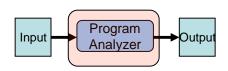
Program Analyzer Issues (discuss)



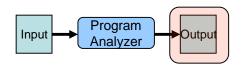
Input issues


- Input is a program, but...
- What language is the program written in?
 - imperative vs. functional vs. object-oriented? maybe even declarative?
 - what pointer model does the language use?
 - reflection, exceptions, continuations?
 - type system trusted or not?
 - one often analyzes an intermediate language... how does one design such a language?

Input issues


- How much of the program do we see?
 - all?
 - one file at a time?
 - one library at a time?
 - reflection...
- Any additional inputs?
 - any human help?
 - profile info?

Analysis issues


- Analysis/compilation model
 - Separate compilation/analysis
 - quick, but no opportunities for interprocedural analysis
 - Link-time
 - allows interprocedural and whole program analysis
 - but what about shared precompiled libraries?
 - and what about compile-time?
 - Run-time
 - best optimization/analysis potential (can even use run-time state as additional information)
 - can handle run-time extensions to the program
 - but severe pressure to limit compilation time
 - Selective run-time compilation
 - choose what part of compilation to delay until run-time
 - can balance compile-time/benefit tradeoffs

Analysis issues

- Does running-time matter?
 - for use in IDE?
 - or in overnight compile?

Output issues

- Form of output varies widely, depending on analysis
 - alias information
 - constantness information
 - loop terminates/does not terminate
- Correctness of analysis results
 - depends on what the results are used for
 - are we attempting to design algorithms for solving undecidable problems?
 - notion of approximation
 - statistical output

Program Transformation Issues (discuss)

Input issues

- A program, and ...
- Program analysis results
- Profile info?
- Environment: # of CPUs, # of cores/CPU, cache size, etc.
- Anything else?

Transformation issues

- What is profitable?
- What order to perform transformations?
- What happens to the program representation?
- What happens to the computed information? For example alias information? Need to recompute?

Output issues

Output in same IL as input?

 Should the output program behave the same way as the input program?