
1

Advanced Compiler Design

CSE 231

Instructor: Sorin Lerner

Why Study Compilers?

Let’s look at a compiler

if (…) {

x := …;

} else {

y := …;

}

…;

ExecCompilerParser
Code

Gen

Compiler

Optimizer Parser
Code

Gen

Compiler

Parser
Code

Gen

Compiler

Let’s look at a compiler

Optimizer

Advanced Optimizer Design

CSE 231

Instructor: Sorin Lerner

What does an optimizer do?

1.Compute information about a program
2.Use that information to perform program 

transformations 
(with the goal of improving some metric, e.g. performance)

Parser
Code

Gen

Compiler

Optimizer

1 2

3 4

5 6



2

What do these tools have in common?

• Bug finders

• Program verifiers

• Code refactoring tools

• Garbage collectors

• Runtime monitoring system

• And… optimizers

What do these tools have in common?

• Bug finders

• Program verifiers

• Code refactoring tools

• Garbage collectors

• Runtime monitoring system

• And… optimizers

They all analyze and transform programs
We will learn about the techniques underlying all 

these tools

Program Analyses, Transformations,

and Applications

CSE 231

Instructor: Sorin Lerner

Course goals

• Understand basic techniques

– cornerstone of a variety of program analysis tools

– useful no matter what your future path

• Get a feel for compiler research/implementation

– useful for research-oriented students

– useful for implementation-oriented students

Course topics

• Representing programs 

• Analyzing and transforming programs

• Applications of these techniques

Course topics (more details)

• Representations

– Abstract Syntax Tree

– Control Flow Graph

– Dataflow Graph

– Static Single Assignment

– Control Dependence Graph

– Program Dependence Graph

– Call Graph

7 8

9 10

11 12



3

Course topics (more details)

• Analysis/Transformation Algorithms

– Dataflow Analysis

– Interprocedural analysis 

– Pointer analysis

Course topics (more details)

• Applications

– Scalar optimizations

– Loop optimizations

– Object oriented optimizations

– Program verification

– Bug finding

Course pre-requisites

• No compilers background necessary

• No familiarity with lattices

– I will review what is necessary in class

• Know C/C++ or an object oriented language

– Project will be in C++

• Standard ugrad cs curriculum likely enough

– Talk to me if you’re concerned

Course work

• In-class midterm (25%)

– Date posted on web site

• Final (35%-40%)

– Date posted on web site

• Course project (35%)

• Participation through clickers (0%-5%)

Clickers

• Participation in a lecture is defined by 
responding to 75% of iclicker questions in that 

lecture.

• If you participate in 80% of lectures, you receive 

100% for 5% of your grade (your participation 
grade). 

• If you participate in fewer than 80% of lectures, 

your final exam score replaces your lost 
participation points. 

Clickers

• Three examples:

– >=80% lecture participation: You receive 100% for 
your 5% participation grade and your final exam is 

worth 35% of your grade.

– 0% lecture participation: Your participation portion of 

your final grade is 0% and your final exam is worth 

40% of your grade.

– 60% lecture participation: You receive 100% for 3% 

(60% of 5%) of your final grade for participation. Your 

final exam is worth 37% (35%+2%) of your final 
grade.

13 14

15 16

17 18



4

Clickers

• Clicker questions will start this week (week 1)

• Clicker attendance will start week 2

• Bookstore and Amazon sells clickers

Course project

• Goal of the project

– Get some hands on experience with compilers

– Two options, most will do option 1 

• Option 1: LLVM project

– Implement some analyses in LLVM, three milestones

– Hand in your code and it’s auto-graded

• Option 2: Research (by instructor approval)

– Pick some interesting idea, and try it out

– Proposals due at the beginning of the second week

– Can leverage your existing research

LLVM Project

• M1: Simple instrumentation

• M2: Intraprocedural Analysis framework

• M3, Implement Analyses in framework

• M4: Interprocedural Analysis

• You will extend LLVM. This will require C++

– If you don’t know C++ or any object oriented 
languages, you should probably drop the class

• To be done alone

Research Project

• Requires instructor approval

– You need to come up with your own idea…

– … by the end of week 1

– Most students doing this will be PhD students

– It’s ok to leverage or overlap with existing research

• To be done alone

• I envision at most 10 people doing this

Readings

• Paper readings throughout the quarter

• Seminal papers and state of the art

• Gives you historical perspective

• Shows you lineage from idea to practice

Administrative info

• Class web page is up

– https://ucsd-pl.github.io/cse231/wi20/

– (or Google “Sorin Lerner”, follow “Teaching Now”)

– Will post lectures, readings, project info, etc.

• Piazza link on web page

– Use for questions, answers

– Especially LLVM/project Q&A 

19 20

21 22

23 24



5

Academic Integrity

• Governed by Policy on Integrity of Scholarship 
(http://senate.ucsd.edu/Operating-Procedures/Senate-
Manual/Appendices/2)

• Allegations are handled by Academic Integrity Office 
(https://students.ucsd.edu/academics/academic-integrity)

• Academic penalty for cheating in 231 will result 
grade reduction, up to and including failing the class

• Cheaters may be subject to additional administrative 
sanctions

• Make sure your code is not publicly visible, 
otherwise you will be found responsible

Questions?

Program Analyzer Issues (discuss)

Program
Analyzer

Input Output

Program Analyzer Issues (discuss)

Program
Analyzer

Input Output

Program Analyzer Issues (discuss)

Program
Analyzer

Input Output

Input issues

• Input is a program, but…

• What language is the program written in?

– imperative vs. functional vs. object-oriented? maybe 
even declarative?

– what pointer model does the language use?

– reflection, exceptions, continuations?

– type system trusted or not?

– one often analyzes an intermediate language... how 

does one design such a language?

Instructor’s discussion notes

Program

Analyzer
Input Output

25 26

27 28

29 30



6

Input issues

• How much of the program do we see?

– all?

– one file at a time?

– one library at a time?

– reflection…

• Any additional inputs?

– any human help?

– profile info?

Instructor’s discussion notes

Program

Analyzer
Input Output

Analysis issues

• Analysis/compilation model
– Separate compilation/analysis

• quick, but no opportunities for interprocedural analysis

– Link-time

• allows interprocedural and whole program analysis

• but what about shared precompiled libraries?

• and what about compile-time?

– Run-time

• best optimization/analysis potential (can even use run-time state as 
additional information)

• can handle run-time extensions to the program

• but severe pressure to limit compilation time

– Selective run-time compilation
• choose what part of compilation to delay until run-time

• can balance compile-time/benefit tradeoffs

Instructor’s discussion notes

Program

Analyzer
Input Output

Analysis issues

• Does running-time matter?

– for use in IDE? 

– or in overnight compile?

Instructor’s discussion notes

Program

Analyzer
Input Output

Output issues

• Form of output varies widely, depending on 
analysis
– alias information

– constantness information

– loop terminates/does not terminate

• Correctness of analysis results
– depends on what the results are used for

– are we attempting to design algorithms for solving 
undecidable problems?

– notion of approximation

– statistical output

Instructor’s discussion notes

Program

Analyzer
Input Output

Program Transformation Issues (discuss)

Program
Transformer

Input Output

Input issues

• A program, and …

• Program analysis results

• Profile info?

• Environment: # of CPUs, # of cores/CPU, cache 
size, etc.

• Anything else?

Instructor’s discussion notes

Program

Transformer
Input Output

31 32

33 34

35 36



7

Transformation issues

• What is profitable?

• What order to perform transformations?

• What happens to the program representation? 

• What happens to the computed information? For 
example alias information? Need to recompute?

Instructor’s discussion notes

Program

Transformer
Input Output

Output issues

• Output in same IL as input?

• Should the output program behave the same 

way as the input program?

Instructor’s discussion notes

Program

Transformer
Input Output

37 38


