Program Representations

Representing programs

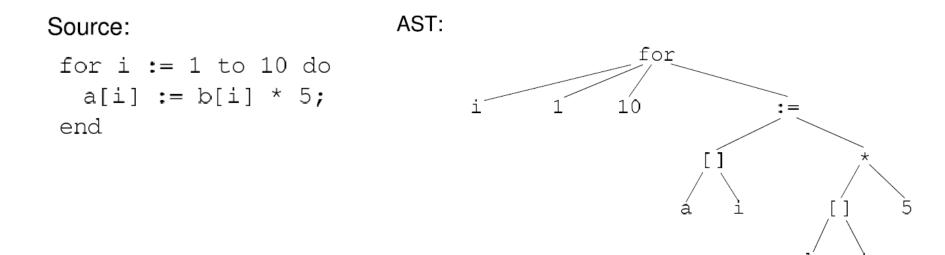
Goals

Representing programs

- Primary goals
 - analysis is easy and effective
 - just a few cases to handle
 - directly link related things
 - transformations are easy to perform
 - general, across input languages and target machines
- Additional goals
 - compact in memory
 - easy to translate to and from
 - tracks info from source through to binary, for source-level debugging, profilling, typed binaries
 - extensible (new opts, targets, language features)
 - displayable

Option 1: high-level syntax based IR

- Represent source-level structures and expressions directly
- Example: Abstract Syntax Tree



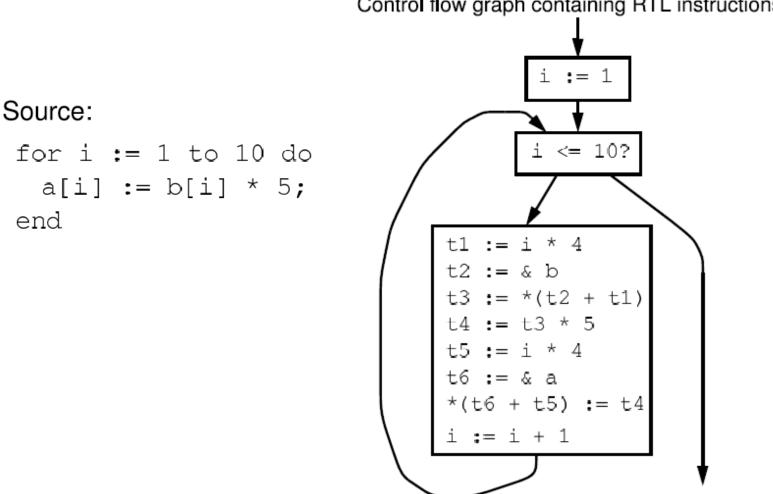
Option 2: low-level IR

- Translate input programs into low-level primitive chunks, often close to the target machine
- Examples: assembly code, virtual machine code (e.g. stack machines), three-address code, register-transfer language (RTL)

• Standard RTL instrs:

assignment	x := y;
unary op	х := ор у;
binary op	x := y op z;
address-of	p := &y
load	x := *(p + o);
store	*(p + o) := x;
call	x := f();
unary compare	ор х ?
binary compare	хору?

Option 2: low-level IR



Control flow graph containing RTL instructions:

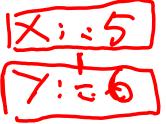
Comparison

Comparison

- Advantages of high-level rep
 - analysis can exploit high-level knowledge of constructs
 - easy to map to source code (debugging, profiling)
- Advantages of low-level rep
 - can do low-level, machine specific reasoning
 - can be language-independent
- Can mix multiple reps in the same compiler

Components of representation

- Control dependencies: sequencing of operations
 - evaluation of if & then
 - side-effects of statements occur in right order
- Data dependencies: flow of definitions from defs to uses
 - operands computed before operations
- Ideal: represent just dependencies that matter
 - dependencies constrain transformations
 - fewest dependences \Rightarrow flexibility in implementation



Control dependencies

- Option 1: high-level representation

 control implicit in semantics of AST nodes
- Option 2: control flow graph (CFG)
 - nodes are individual instructions
 - edges represent control flow between instructions
- Options 2b: CFG with basic blocks
 - basic block: sequence of instructions that don't have any branches, and that have a single entry point
 - BB can make analysis more efficient: compute flow functions for an entire BB before start of analysis

Control dependencies

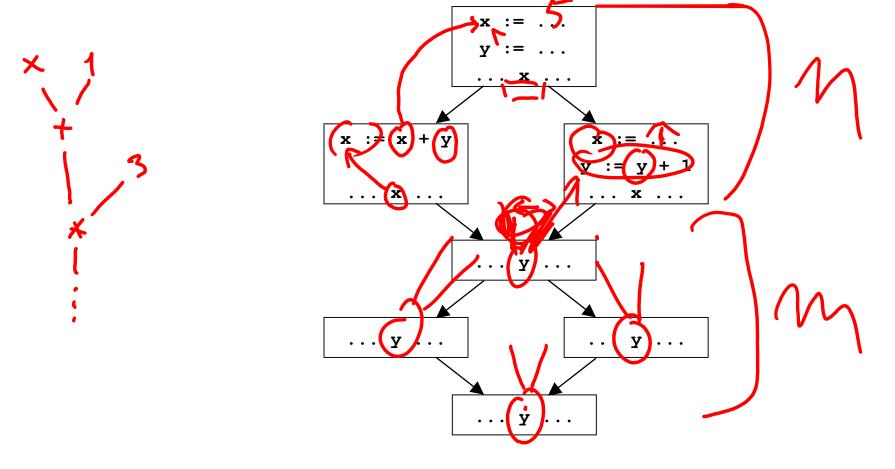
• CFG does not capture loops very well

- Some fancier options include:
 - the Control Dependence Graph
 - the Program Dependence Graph

More on this later. Let's first look at data dependencies

Data dependencies

 Simplest way to represent data dependencies: def/use chains

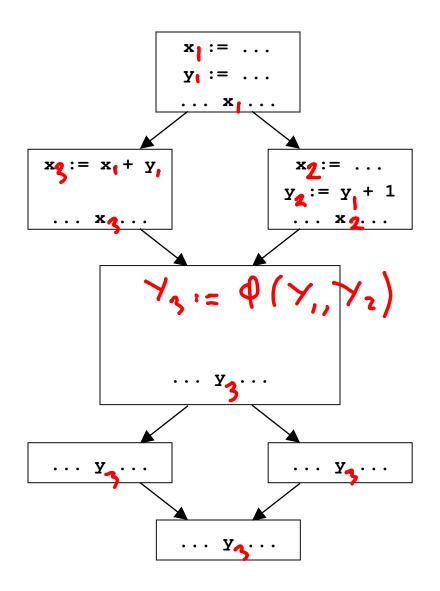


Def/use chains

- Directly captures dataflow
 - works well for things like constant prop
- But...
- Ignores control flow
 - misses some opt opportunities since conservatively considers all paths
 - not executable by itself (for example, need to keep CFG around)
 - not appropriate for code motion transformations
- Must update after each transformation
- Space consuming

SSA

- Static Single Assignment
 - invariant: each use of a variable has only one def



SSA

- Create a new variable for each def
- Adjust uses to refer to appropriate new names

Converting back from SSA

- Semantics of $x_3 := \phi(x_1, x_2)$ - set x_3 to x_i if execution came from ith predecessor
- How to implement φ nodes?

Converting back from SSA

- Semantics of x₃ := φ(x₁, x₂)

 set x₃ to x_i if execution came from ith predecessor
- How to implement φ nodes?
 - Insert assignment $x_3 := x_1$ along 1st predecessor

– Insert assignment $x_3 := x_2$ along 2nd predecessor

- If register allocator assigns x₁, x₂ and x₃ to the same register, these moves can be removed
 - $x_1 ... x_n$ usually have non-overlapping lifetimes, so this kind of register assignment is legal

Recall: Common Sub-expression Elim

- Want to compute when an expression is available in a var
- Domain: $\{x \rightarrow E, y \rightarrow E_2, z \rightarrow E_3\}$ $S = \{x \rightarrow E \mid x \in Van, E \in E \times p^2\}$

$$0=2^{S}$$

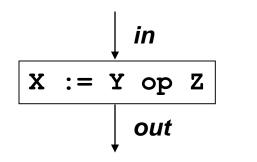
$$f=S$$

$$T=0^{S}$$

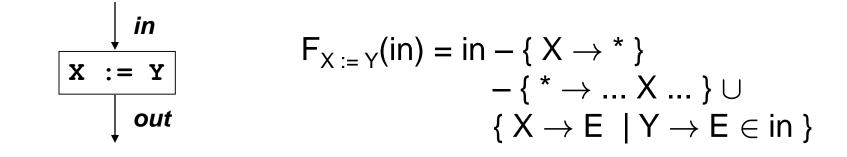
$$U=\Lambda$$

Recall: CSE Flow functions

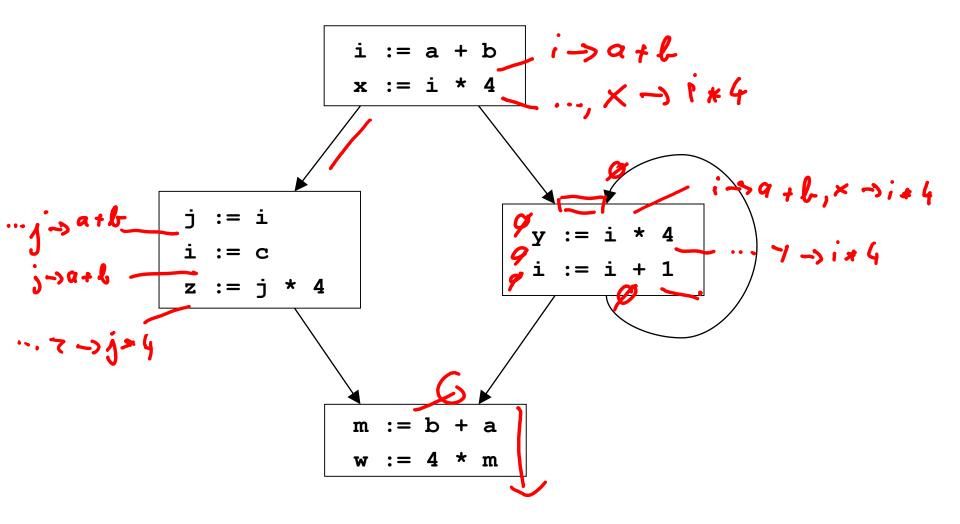
$$\alpha_1 := \alpha_2 + \beta_2$$



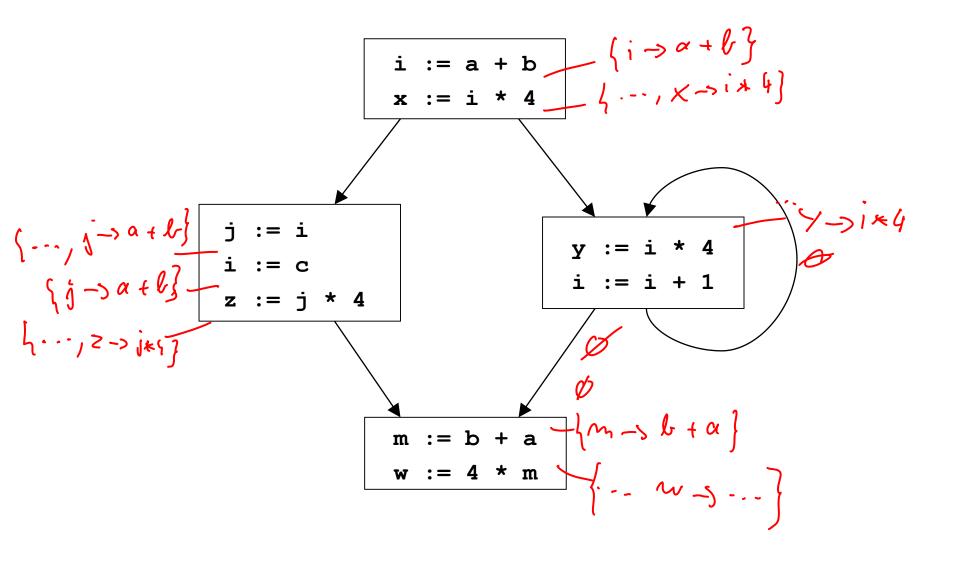
$$\begin{array}{l} \mathsf{F}_{\mathsf{X}\,:=\,\mathsf{Y}\,\mathsf{op}\,\mathsf{Z}}(\mathsf{in}) = \mathsf{in} - \{\,\mathsf{X}\,\rightarrow\,\mathsf{*}\,\,\} \\ \quad -\,\{\,^{*}\rightarrow\,\ldots\,\mathsf{X}\,\ldots\,\} \cup \\ \quad \{\,\mathsf{X}\,\rightarrow\,\mathsf{Y}\,\mathsf{op}\,\mathsf{Z}\,\mid\mathsf{X}\neq\mathsf{Y}\,\wedge\,\mathsf{X}\neq\mathsf{Z}\} \end{array}$$



Example



Example

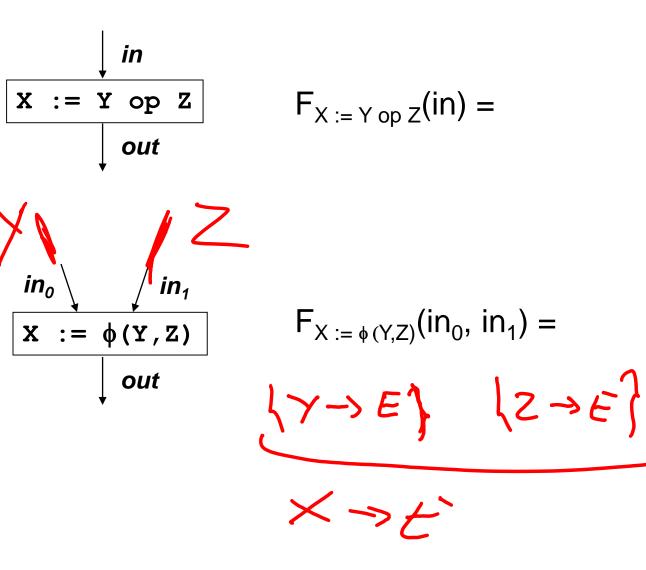


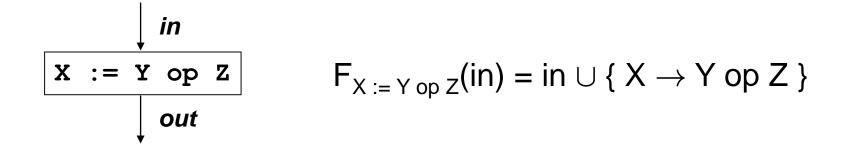
Problems

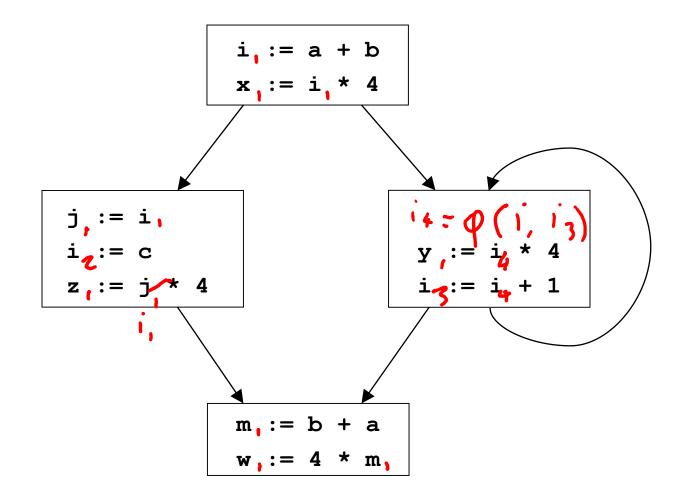
- z := j * 4 is not optimized to z := x, even though x contains the value j * 4
- m := b + a is not optimized, even though a + b was already computed
- w := 4 * m it not optimized to w := x, even though x contains the value 4 *m

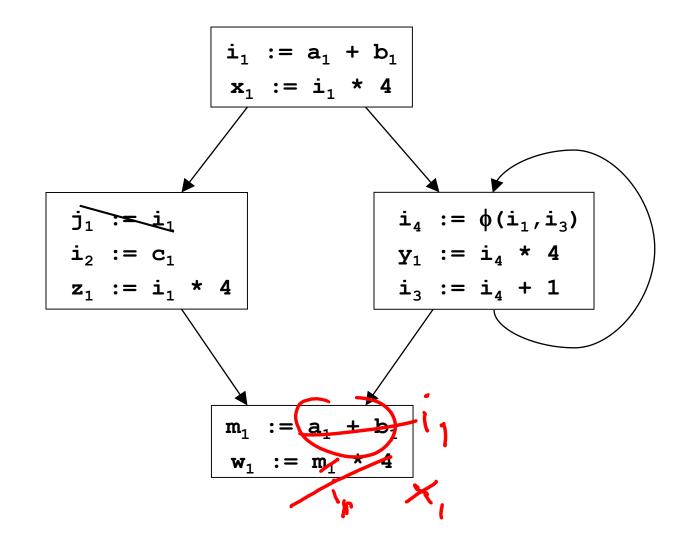
Problems: more abstractly

- Available expressions overly sensitive to name choices, operand orderings, renamings, assignments
- Use SSA: distinct values have distinct names
- Do copy prop before running available exprs
- Adopt canonical form for commutative ops









What about pointers?

• Pointers complicate SSA. Several options.

- Option 1: don't use SSA for pointed to variables
- Option 2: adapt SSA to account for pointers
- Option 3: define src language so that variables cannot be pointed to (eg: Java)

SSA helps us with CSE

• Let's see what else SSA can help us with

Loop-invariant code motion

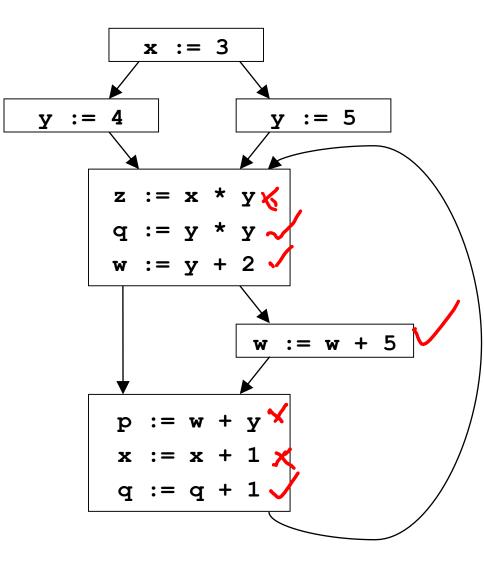
Loop-invariant code motion

• Two steps: analysis and transformations

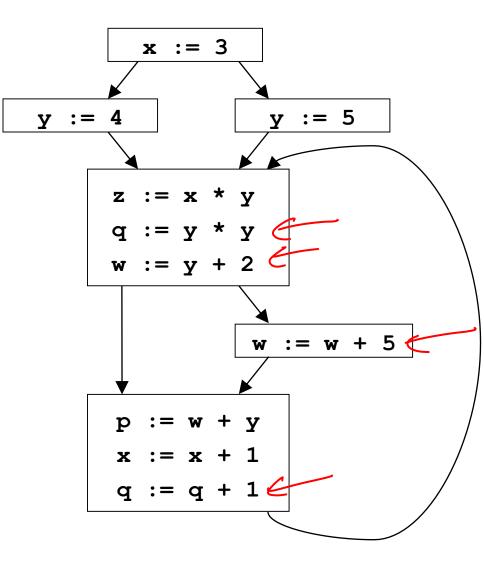
- Step1: find invariant computations in loop

 invariant: computes same result each time evaluated
- Step 2: move them outside loop
 - to top if used within loop: code hoisting
 - to bottom if used after loop: code sinking

Example



Example



Detecting loop invariants ^{nand (a)}

• An expression is invariant in a loop L iff:

(base cases)

- it's a constant
- it's a variable use, all of whose defs are outside of L

(inductive cases)

- it's a pure computation all of whose args are loopinvariant
- it's a variable use with only one reaching def, and the rhs of that def is loop-invariant

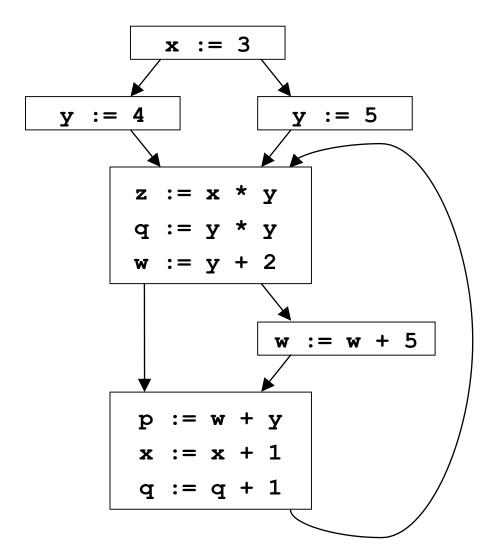
Computing loop invariants

- Option 1: iterative dataflow analysis
 - optimistically assume all expressions loop-invariant, and propagate
- Option 2: build def/use chains
 - follow chains to identify and propagate invariant expressions

• Option 3: SSA

- like option 2, but using SSA instead of def/use chains

Example using def/use chains



 An expression is invariant in a loop L iff:

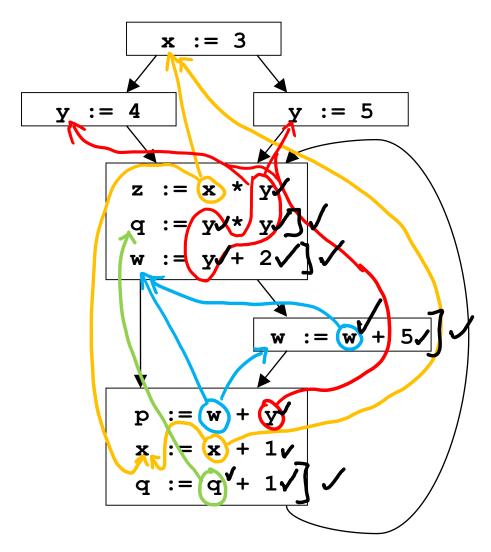
(base cases)

- it's a constant
- it's a variable use, all of whose defs are outside of L

(inductive cases)

- it's a pure computation all of whose args are loop-invariant
- it's a variable use with only one reaching def, and the rhs of that def is loop-invariant

Example using def/use chains



 An expression is invariant in a loop L iff:

(base cases)

- it's a constant
- it's a variable use, all of whose defs are outside of L

(inductive cases)

- it's a pure computation all of whose args are loop-invariant
- it's a variable use with only one reaching def, and the rhs of that def is loop-invariant

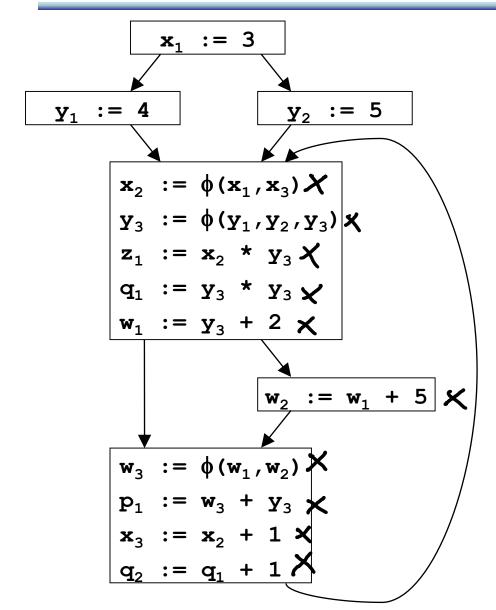
Loop invariant detection using SSA

- An expression is invariant in a loop L iff:
 - (base cases)
 - it's a constant
 - it's a variable use, all of whose single defs are outside of L

(inductive cases)

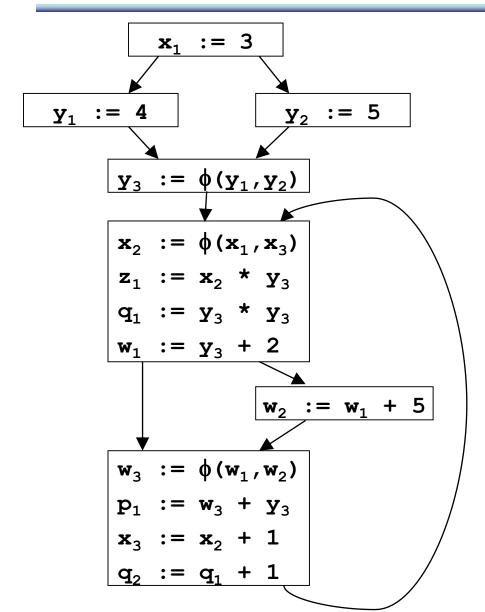
- it's a pure computation all of whose args are loopinvariant
- it's a variable use whose single reaching def, and the rhs of that def is loop-invariant
- ϕ functions are not pure

Example using SSA



- An expression is invariant in a loop L iff:
 - (base cases)
 - it's a constant
 - it's a variable use, all of whose single defs are outside of L
 - (inductive cases)
 - it's a pure computation all of whose args are loop-invariant
 - it's a variable use whose
 single reaching def, and the
 rhs of that def is loop-invariant
- ϕ functions are not pure

Example using SSA and preheader



- An expression is invariant in a loop L iff:
 - (base cases)
 - it's a constant
 - it's a variable use, all of whose single defs are outside of L

(inductive cases)

- it's a pure computation all of whose args are loop-invariant
- it's a variable use whose
 single reaching def, and the
 rhs of that def is loop-invariant
- ϕ functions are not pure

Summary: Loop-invariant code motion

• Two steps: analysis and transformations

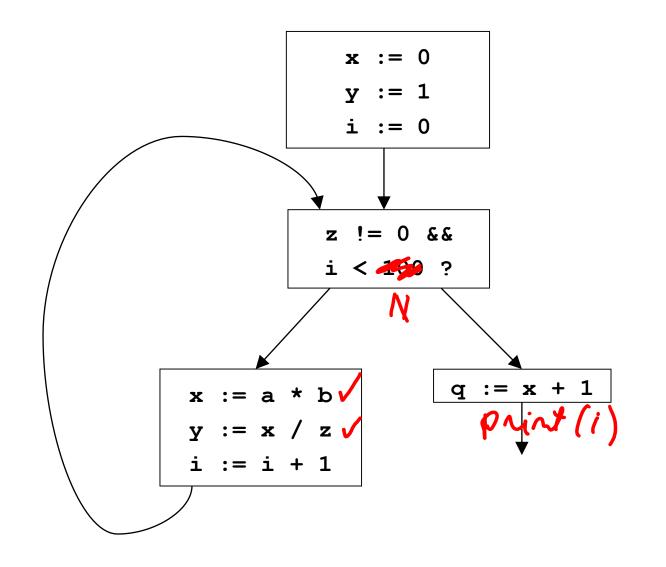
- Step1: find invariant computations in loop

 invariant: computes same result each time evaluated
- Step 2: move them outside loop
 - to top if used within loop: code hoisting
 - to bottom if used after loop: code sinking

Code motion

- Say we found an invariant computation, and we want to move it out of the loop (to loop preheader)
- When is it legal?
- Need to preserve relative order of invariant computations to preserve data flow among move statements
- Need to preserve relative order between invariant computations and other computations

Example



Lesson from example: domination restriction

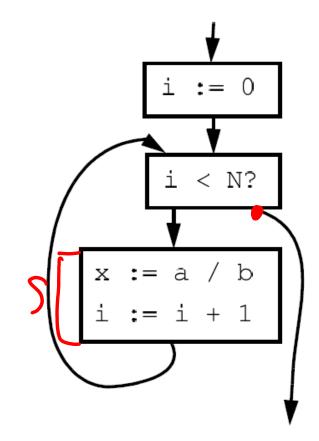
 To move statement S to loop pre-header, S must dominate all loop exits

 [A dominates B when all paths to B first pass through A]

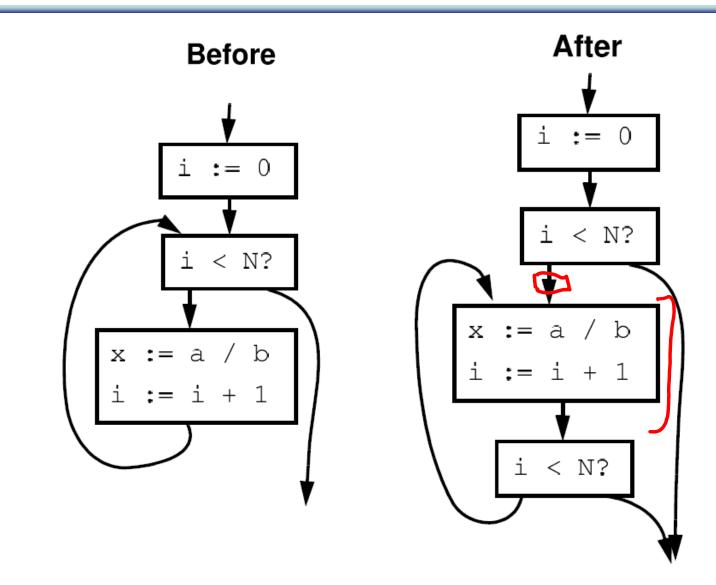
Otherwise may execute S when never executed otherwise

• If S is pure, then can relax this constraint at cost of possibly slowing down the program

Domination restriction in for loops

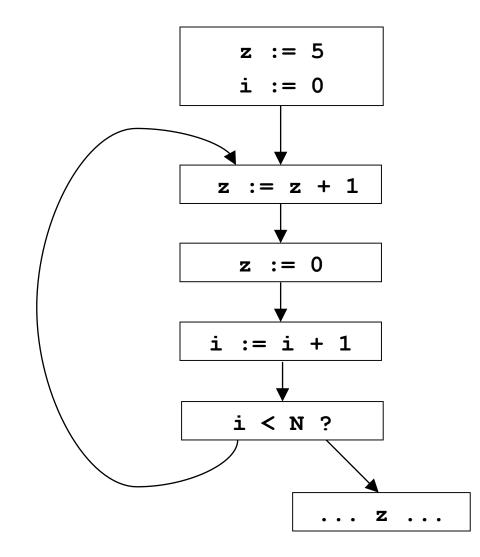


Domination restriction in for loops



Avoiding domination restriction

- Domination restriction strict
 - Nothing inside branch can be moved
 - Nothing after a loop exit can be moved
- Can be circumvented through loop normalization
 while-do => if-do-while



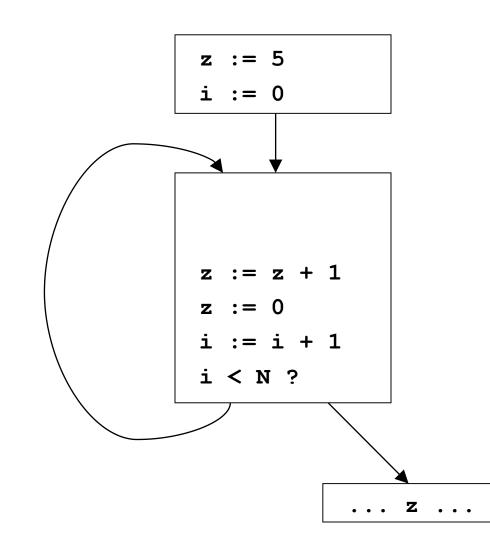
Data dependence restriction

• To move S: z := x op y:

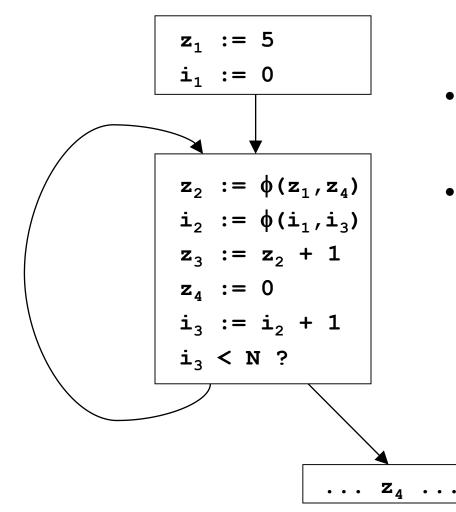
S must be the only assignment to z in loop, and no use of z in loop reached by any def other than S

• Otherwise may reorder defs/uses

Avoiding data restriction



Avoiding data restriction



- Restriction unnecessary
 in SSA!!!
- Implementation of phi nodes as moves will cope with re-ordered defs/uses

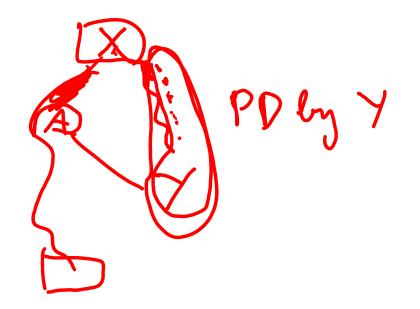
Summary of Data dependencies

- We've seen SSA, a way to encode data dependencies better than just def/use chains
 - makes CSE easier
 - makes loop invariant detection easier
 - makes code motion easier

 Now we move on to looking at how to encode control dependencies

Control Dependencies

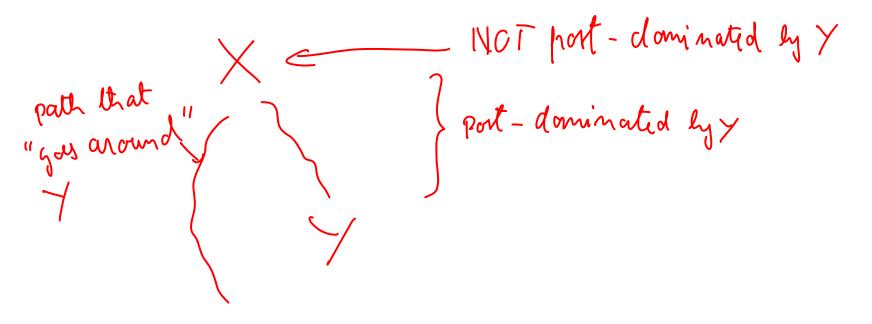
- A node (basic block) Y is control-dependent on another X iff X determines whether Y executes
 - there exists a path from X to Y s.t. every node in the path other than X and Y is post-dominated by Y
 - X is not post-dominated by Y



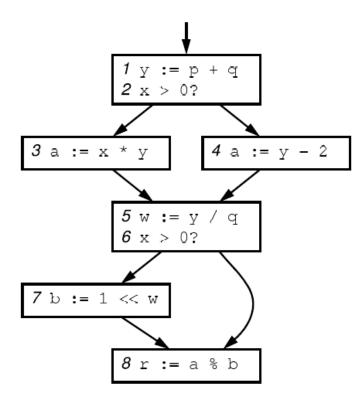
Control Dependencies

- A node (basic block) Y is control-dependent on another X iff X determines whether Y executes
 - there exists a path from X to Y s.t. every node in the path other than X and Y is post-dominated by Y

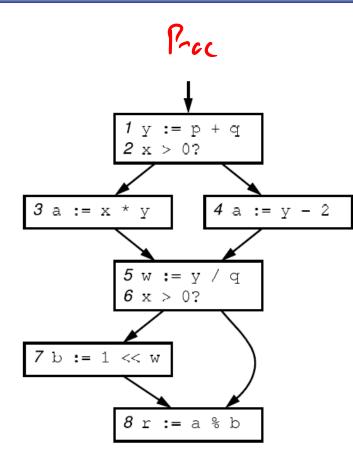
X is not post-dominated by Y



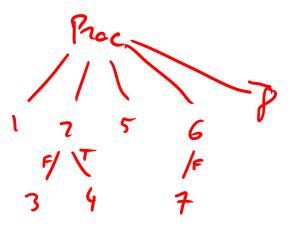
Example



Example



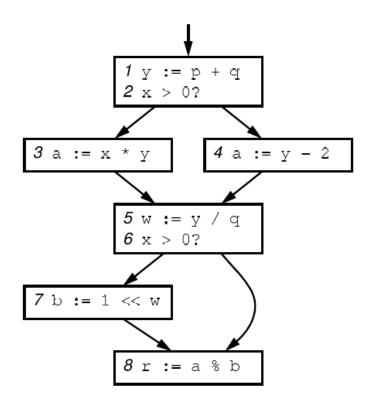
Control dependence relation 3 depender on 2 u 4 ų 2 1 et i 6



Control Dependence Graph

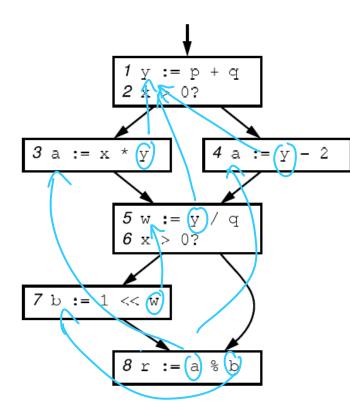
- Control dependence graph: Y descendent of X iff Y is control dependent on X
 - label each child edge with required condition
 - group all children with same condition under region node
- Program dependence graph: super-impose dataflow graph (in SSA form or not) on top of the control dependence graph

Example

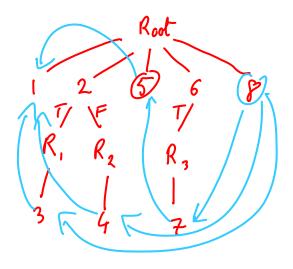


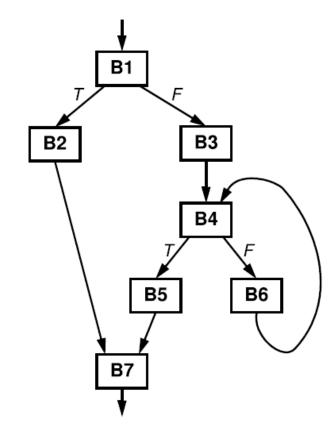
Control dependence relation 3 depender on 2 u 4 u 2 11 a 6

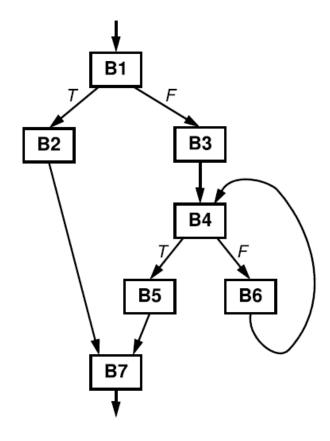
Example

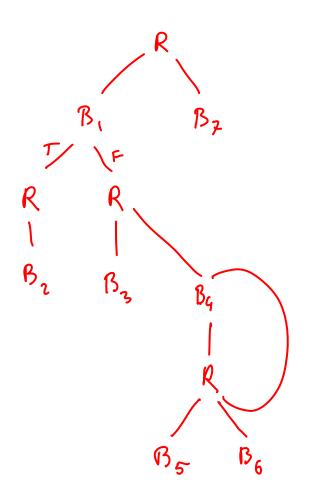


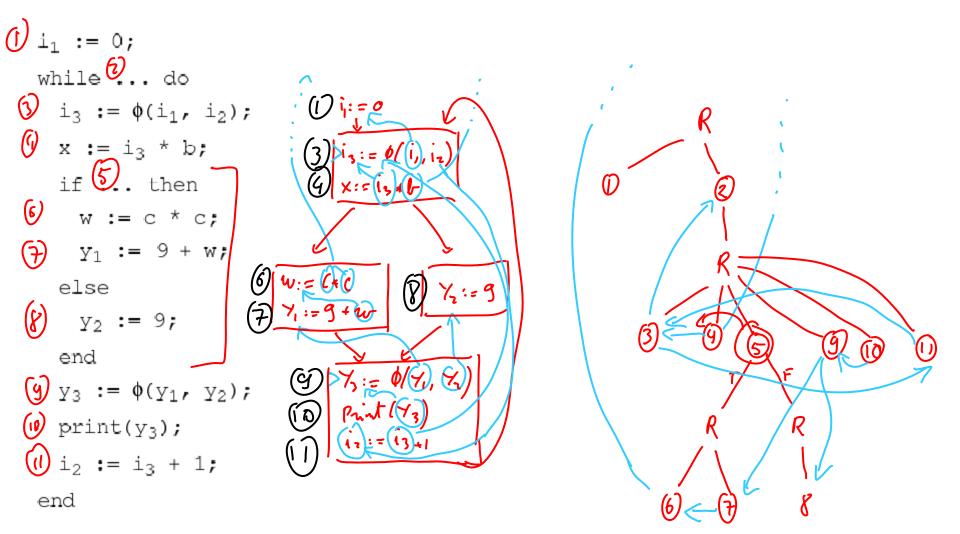
Control dependence relation 3 depender on 2 4 ų u 2 a - 11 6











Summary of Control Depence Graph

• More flexible way of representing controldepencies than CFG (less constraining)

Makes code motion a local transformation

 However, much harder to convert back to an executable form

Course summary so far

- Dataflow analysis
 - flow functions, lattice theoretic framework, optimistic iterative analysis, precision, MOP
- Advanced Program Representations
 - SSA, CDG, PDG
- Along the way, several analyses and opts
 - reaching defns, const prop & folding, available exprs & CSE, liveness & DAE, loop invariant code motion
- Pointer analysis
 - Andersen, Steensguaard, and long the way: flow-insensitive analysis
- Next: dealing with procedures