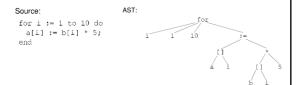
Program Representations

Representing programs

· Goals

1

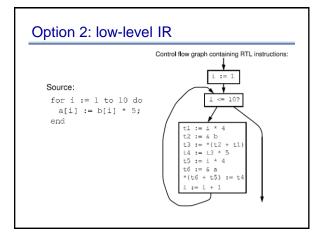

2

Representing programs

- Primary goals
 - analysis is easy and effective
 - · just a few cases to handle
 - directly link related things
 - transformations are easy to perform
 - general, across input languages and target machines
- · Additional goals
 - compact in memory
 - easy to translate to and from
 - tracks info from source through to binary, for source-level debugging, profilling, typed binaries
 - extensible (new opts, targets, language features)
 - displayable

Option 1: high-level syntax based IR

- Represent source-level structures and expressions directly
- · Example: Abstract Syntax Tree


3

4

Option 2: low-level IR

- Translate input programs into low-level primitive chunks, often close to the target machine
- Examples: assembly code, virtual machine code (e.g. stack machines), three-address code, register-transfer language (RTL)
- · Standard RTL instrs:

assignment	x := y;
unary op	х := ор у;
binary op	x := y op z;
address-of	p := &y
load	x := *(p + 0);
store	*(p + o) := x;
call	x := f();
unary compare	орх?
binary compare	кору?

Comparison

Comparison

- · Advantages of high-level rep
 - analysis can exploit high-level knowledge of constructs
 - easy to map to source code (debugging, profiling)
- · Advantages of low-level rep

Control dependencies

Option 1: high-level representation

• Option 2: control flow graph (CFG)

· Options 2b: CFG with basic blocks

- nodes are individual instructions

- control implicit in semantics of AST nodes

- edges represent control flow between instructions

- basic block: sequence of instructions that don't have

any branches, and that have a single entry point

 BB can make analysis more efficient: compute flow functions for an entire BB before start of analysis

- can do low-level, machine specific reasoning
- can be language-independent
- Can mix multiple reps in the same compiler

7

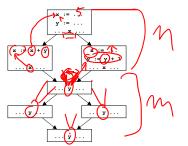
9

8

Components of representation

- Control dependencies: sequencing of operations
 - evaluation of if & then
 - side-effects of statements occur in right order
- Data dependencies: flow of definitions from defs to uses
 - operands computed before operations
- · Ideal: represent just dependencies that matter
 - dependencies constrain transformations
 - fewest dependences \Rightarrow flexibility in implementation

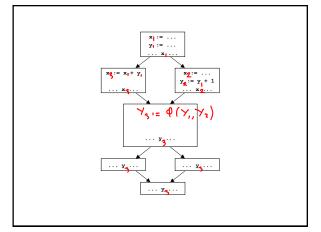
10


Control dependencies

- CFG does not capture loops very well
- · Some fancier options include:
 - the Control Dependence Graph
 - the Program Dependence Graph
- More on this later. Let's first look at data dependencies

Data dependencies

 Simplest way to represent data dependencies: def/use chains


11 12

Def/use chains

- · Directly captures dataflow
 - works well for things like constant prop
- But...
- Ignores control flow
 - misses some opt opportunities since conservatively considers all paths
 - not executable by itself (for example, need to keep CFG around)
 - not appropriate for code motion transformations
- · Must update after each transformation
- · Space consuming

14

13

SSA

SSA

· Static Single Assignment

- invariant: each use of a variable has only one def

- · Create a new variable for each def
- · Adjust uses to refer to appropriate new names
- Question: how can one figure out where to insert φ nodes using a liveness analysis and a reaching defns analysis.

16

Converting back from SSA

• Semantics of $x_3 := \phi(x_1, x_2)$

15

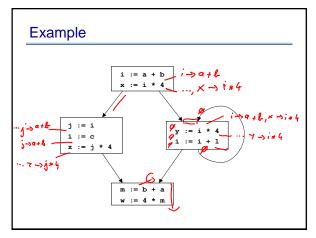
- set x₃ to x_i if execution carne from ith predecessor

X=X- X-X-X-1 X-3-X-1 X

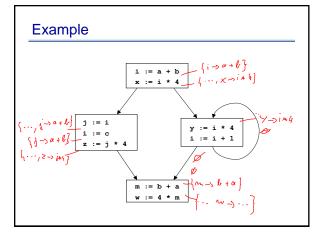
Converting back from SSA

- Semantics of $x_3 := \phi(x_1, x_2)$
 - set x₃ to x_i if execution came from ith predecessor
- How to implement ϕ nodes?
 - Insert assignment $x_3 := x_1$ along 1st predecessor
 - Insert assignment $x_3 := x_2$ along 2^{nd} predecessor
- If register allocator assigns x₁, x₂ and x₃ to the same register, these moves can be removed
 - $-\,x_1\,..\,x_n$ usually have non-overlapping lifetimes, so this kind of register assignment is legal

17 18


Recall: Common Sub-expression Elim

- Want to compute when an expression is available in a var
- Domain: $\{x \rightarrow E, y \rightarrow E_z, z \rightarrow E_3\}$ $S = \{x \rightarrow E \mid x \in Vax, E \in Expa\}$ $0 = 2^{S}$ 1 = S

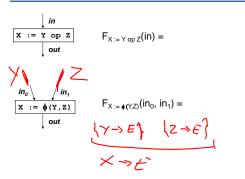

19

Recall: CSE Flow functions $C(: = Q_2 + C)$ x := x op z $\downarrow \text{ out}$ $F_{X := Y \text{ op } Z}(\text{in}) = \text{in} - \{X \to *\}$ $- \{* \to ... X ...\} \cup \{X \to Y \text{ op } Z \mid X \neq Y \land X \neq Z\}$ $\downarrow \text{ in}$ x := x $\downarrow \text{ out}$ $F_{X := Y}(\text{in}) = \text{in} - \{X \to *\}$ $- \{* \to ... X ...\} \cup \{X \to E \mid Y \to E \in \text{in}\}$

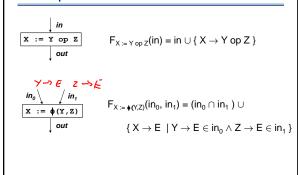
20

21

22

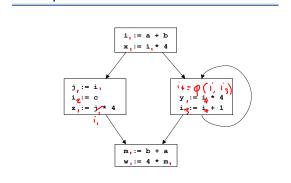

Problems

- z := j * 4 is not optimized to z := x, even though x contains the value j * 4
- m := b + a is not optimized, even though a + b was already computed
- w := 4 * m it not optimized to w := x, even though x contains the value 4 *m


Problems: more abstractly

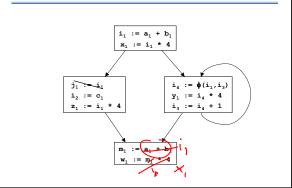
- Available expressions overly sensitive to name choices, operand orderings, renamings, assignments
- · Use SSA: distinct values have distinct names
- · Do copy prop before running available exprs
- · Adopt canonical form for commutative ops

Example in SSA


Example in SSA

Example in SSA

25


27

Example in SSA

26

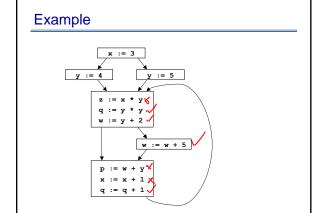
28

What about pointers?

- Pointers complicate SSA. Several options.
- · Option 1: don't use SSA for pointed to variables
- · Option 2: adapt SSA to account for pointers
- Option 3: define src language so that variables cannot be pointed to (eg: Java)

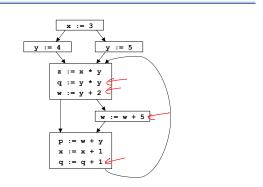
SSA helps us with CSE

- · Let's see what else SSA can help us with
- · Loop-invariant code motion


29 30

Loop-invariant code motion

- · Two steps: analysis and transformations
- · Step1: find invariant computations in loop
 - invariant: computes same result each time evaluated
- · Step 2: move them outside loop
 - to top if used within loop: code hoisting
 - to bottom if used after loop: code sinking


31

33

32

Example

34

36

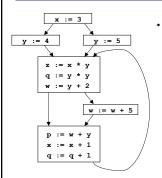
Detecting loop invariants

rund (a)

An expression is invariant in a loop L iff:

(base cases)

- it's a constant
- it's a variable use, all of whose defs are outside of L


(inductive cases)

- it's a pure computation all of whose args are loopinvariant
- it's a variable use with only one reaching def, and the rhs of that def is loop-invariant

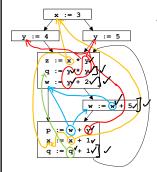
Computing loop invariants

- Option 1: iterative dataflow analysis
 - optimistically assume all expressions loop-invariant, and propagate
- · Option 2: build def/use chains
 - follow chains to identify and propagate invariant expressions
- · Option 3: SSA
 - like option 2, but using SSA instead of def/use chains

Example using def/use chains

 An expression is invariant in a loop L iff:

(base cases)


- it's a constant
- it's a variable use, all of whose defs are outside of L

(inductive cases)

- it's a pure computation all of whose args are loop-invariant
- it's a variable use with only one reaching def, and the rhs of that def is loop-invariant

35

Example using def/use chains

 An expression is invariant in a loop L iff:

(base cases)

- it's a constant
- it's a variable use, all of whose defs are outside of L

(inductive cases)

- it's a pure computation all of whose args are loop-invariant
- it's a variable use with only one reaching def, and the rhs of that def is loop-invariant

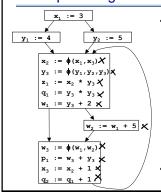
37

Loop invariant detection using SSA

· An expression is invariant in a loop L iff:

(base cases)

- it's a constant
- it's a variable use, all of whose single defs are outside of L


(inductive cases)

- it's a pure computation all of whose args are loopinvariant
- it's a variable use whose single reaching def, and the rhs of that def is loop-invariant
- ϕ functions are not pure

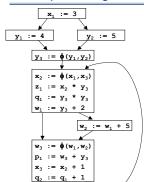
38

40

Example using SSA

 An expression is invariant in a loop L iff:

(base cases)


- it's a constant
- it's a variable use, all of whose **single** defs are outside of I

(inductive cases)

- it's a pure computation all of whose args are loop-invariant
- it's a variable use whose single reaching def, and the rhs of that def is loop-invariant
- ϕ functions are not pure

39

Example using SSA and preheader

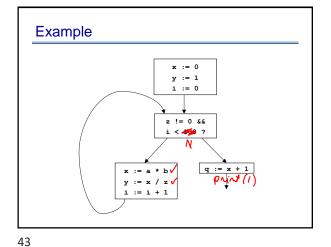
 An expression is invariant in a loop L iff:

(base cases)

- it's a constant
 - it's a variable use, all of whose single defs are outside of L

(inductive cases)

- it's a pure computation all of whose args are loop-invariant
- it's a variable use whose single reaching def, and the rhs of that def is loop-invariant
- ϕ functions are not pure


Summary: Loop-invariant code motion

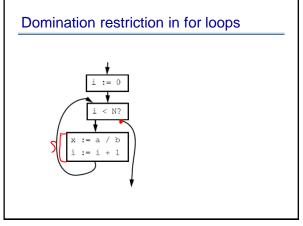
- · Two steps: analysis and transformations
- · Step1: find invariant computations in loop
 - invariant: computes same result each time evaluated
- · Step 2: move them outside loop
 - to top if used within loop: code hoisting
 - to bottom if used after loop: code sinking

Code motion

- Say we found an invariant computation, and we want to move it out of the loop (to loop preheader)
- · When is it legal?
- Need to preserve relative order of invariant computations to preserve data flow among move statements
- Need to preserve relative order between invariant computations and other computations

41 42

Lesson from example: domination restriction


To move statement S to loop pre-header, S must dominate all loop exits

[A dominates B when all paths to B first pass through A]

- Otherwise may execute S when never executed otherwise
- If S is pure, then can relax this constraint at cost of possibly slowing down the program

44

46

Domination restriction in for loops

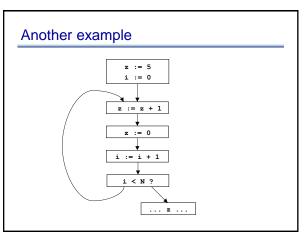
Before

i := 0

i < N?

x := a / b

i := i + 1


i < N?

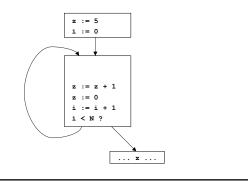
Avoiding domination restriction

· Domination restriction strict

45

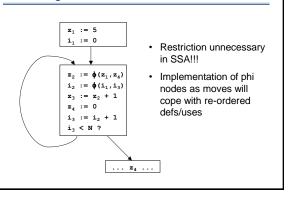
- Nothing inside branch can be moved
- Nothing after a loop exit can be moved
- Can be circumvented through loop normalization
 - while-do => if-do-while

47 48


Data dependence restriction

• To move S: z := x op y:

S must be the only assignment to ${\bf z}$ in loop, and no use of ${\bf z}$ in loop reached by any def other than S


· Otherwise may reorder defs/uses

Avoiding data restriction

50

Avoiding data restriction

Summary of Data dependencies

- We've seen SSA, a way to encode data dependencies better than just def/use chains
 - makes CSE easier
 - makes loop invariant detection easier
 - makes code motion easier
- Now we move on to looking at how to encode control dependencies

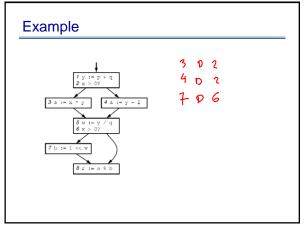
51

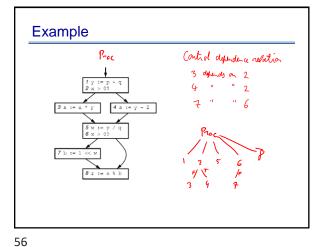
49

52

54

Control Dependencies

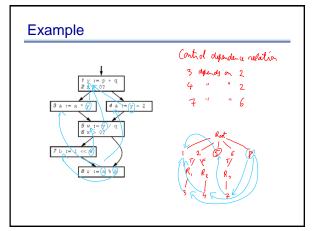

- A node (basic block) Y is control-dependent on another X iff X determines whether Y executes
 - there exists a path from X to Y s.t. every node in the path other than X and Y is post-dominated by Y
 - X is not post-dominated by Y

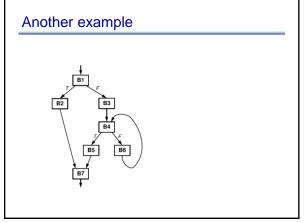


Control Dependencies

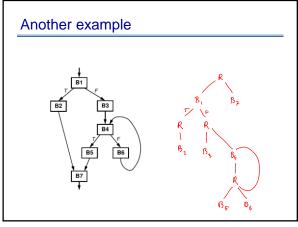
- A node (basic block) Y is control-dependent on another X iff X determines whether Y executes
 - there exists a path from X to Y s.t. every node in the path other than X and Y is post-dominated by Y
 - X is not post-dominated by Y

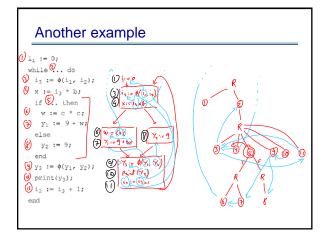
53




Control Dependence Graph

55


- Control dependence graph: Y descendent of X iff Y is control dependent on X
 - label each child edge with required condition
 - group all children with same condition under region node
- Program dependence graph: super-impose dataflow graph (in SSA form or not) on top of the control dependence graph


57 58

59 60

Summary of Control Depence Graph

 More flexible way of representing controldepencies than CFG (less constraining)

61

- · Makes code motion a local transformation
- However, much harder to convert back to an executable form

Course summary so far

· Dataflow analysis

62

- flow functions, lattice theoretic framework, optimistic iterative analysis, precision, MOP
- · Advanced Program Representations
 - SSA, CDG, PDG
- Along the way, several analyses and opts
 - reaching defns, const prop & folding, available exprs & CSE, liveness & DAE, loop invariant code motion
- Pointer analysis
 - Andersen, Steensguaard, and long the way: flow-insensitive analysis
- · Next: dealing with procedures

63 64