Program Representations




Representing programs

« Goals



Representing programs

* Primary goals

— analysis is easy and effective
 just a few cases to handle
« directly link related things

— transformations are easy to perform
— general, across input languages and target machines

« Additional goals
— compact in memory
— easy to translate to and from

— tracks info from source through to binary, for source-level
debugging, profilling, typed binaries

— extensible (new opts, targets, language features)
— displayable



Option 1: high-level syntax based IR

* Represent source-level structures and
expressions directly

« Example: Abstract Syntax Tree

Source: AST:
: for
for 1 = 1 to 10 do ) T
a[i] := b[1] * 5; if---”"'f__f/lo/ Hﬁﬁh"“g“:
end [ ]/ \*
/ : \ // \
a 1 [ ] 5



Option 2: low-level IR

e Translate input programs
Into low-level primitive
chunks, often close to the
target machine

« Examples: assembly
code, virtual machine
code (e.g. stack
machines), three-address
code, register-transfer
language (RTL)

« Standard RTL instrs:

assignment X 1=y}

unary op X 1= op yy
binary op X =Yy Op Z;
address-of p = &y;

load X 1= *(p + 0);
store *(p + 0) = X;
call x 1= f(...);
unary compare op x ?

binary compare | x op y ?




Option 2: low-level IR

Control flow graph containing RTL instructions:

i =1
Source:
for 1 := 1 to 10 do 1 <= 107
ali] := b[1] * 5; /
end
tl =1 * 4
tZ = & b
t3 = *(t2 + tl)
Ld == L3 * 5
th =1 & 4
té 1= & a
*(£d + t5) := td
i =1+ 1




Comparison




Comparison

« Advantages of high-level rep

— analysis can exploit high-level knowledge of
constructs

— easy to map to source code (debugging, profiling)

« Advantages of low-level rep
— can do low-level, machine specific reasoning
— can be language-independent

« Can mix multiple reps in the same compiler



Components of representation

« Control dependencies: seguencing of operations
— evaluation of if & then
— side-effects of statements occur in right order

« Data dependencies: flow of definitions from defs
to uses

— operands computed before operations

 |deal: represent just dependencies that matter

— dependencies constrain transformations
— fewest dependences = flexibility in implementation



Control dependencies

* Option 1: high-level representation
— control implicit in semantics of AST nodes

* Option 2: control flow graph (CFG)
— nodes are individual instructions
— edges represent control flow between instructions

* Options 2b: CFG with basic blocks

— basic block: sequence of instructions that don’t have
any branches, and that have a single entry point

— BB can make analysis more efficient. compute flow
functions for an entire BB before start of analysis



Control dependencies

 CFG does not capture loops very well

« Some fancier options include:
— the Control Dependence Graph
— the Program Dependence Graph

« More on this later. Let’s first look at data
dependencies



Data dependencies

« Simplest way to represent data dependencies:
def/use chains




Def/use chains

Directly captures dataflow
— works well for things like constant prop

« But...

Ignores control flow

— misses some opt opportunities since conservatively considers all
paths

— not executable by itself (for example, need to keep CFG around)
— not appropriate for code motion transformations

Must update after each transformation

« Space consuming



SSA

« Static Single Assignment
— Invariant: each use of a variable has only one def






SSA

Create a new variable for each def

Insert ¢ pseudo-assignments at merge points

Adjust uses to refer to appropriate new names

Question: how can one figure out where to insert
¢ nodes using a liveness analysis and a
reaching defns analysis.



Converting back from SSA

* Semantics of X5 := ¢(Xq, X,)
— set X; to x; if execution came from ith predecessor

 How to implement ¢ nodes?



Converting back from SSA

* Semantics of X5 := ¢(Xq, X,)
— set X; to x; if execution came from ith predecessor

 How to implement ¢ nodes?
— Insert assignment X, := X, along 18t predecessor
— Insert assignment X, := X, along 2" predecessor

* If register allocator assigns x,, X, and X5 to the
same register, these moves can be removed

— X, .. X, usually have non-overlapping lifetimes, so this
kind of register assignment is legal



Recall: Common Sub-expression Elim

« Want to compute when an expression Is
available in a var

 Domain: 4,( SE, v E 74 E,)
§:ﬁ>(”é: | < el  Ec L:“P“}
S
V=2
+=5
70
U e\



Recall: CSE Flow functions

lin Fx=yopz(IN) =IN—={ X —=*}
X :=Y op Z —{*—> .. X..}U
| out {X=>YopZ | X#YAX=Z}
lin = (in) = | { X )
. x=y(N)=IN-{X—=*
X =Y —{*—> .. X..}U

10‘“ {XSE|Y—=Ecin}



Example

a + b

i*x 4

7

y :=1i * 4
i::=1i4+1

N

b + a
4 * m




Example

a +b//4i'—>a+0‘}

X
%-wulr} j =1
/ 1 =
(l\0~30({'@]-—/‘ =j*4
By \
m:=b + a"l\’\""‘\(’+a}
W p—v




Problems

« Z:=]*4is not optimized to z .= X, even though X
contains the value | * 4

* m:=Db+ ais not optimized, even thougha + b
was already computed

« W:=4*mitnot optimized to w := X, even though
X contains the value 4 *m



Problems: more abstractly

Avalilable expressions overly sensitive to name
choices, operand orderings, renamings,
assignments

Use SSA: distinct values have distinct names
Do copy prop before running available exprs

Adopt canonical form for commutative ops



Example in SSA

lin
X :=Y op 2
[out

ino\ /inl

X := ¢(Y,2Z)

[ ou

|:X =Yop Z(in) =

Fy .= svz)(iNg, INy) =



Example in SSA

in

X :=Y op Z Fy.=yopz(iN)=INU{X—=YopZ}

out

ino\ /inl

X := ¢(Y,2Z)

10‘” {X>E|Y—>E€cingpANZ—Ecin,;}

Fy = scvp(INg, INg) = (iINg NNy ) U




Example in SSA

i :=a + b

X =1 * 4
j =i
i :=c¢c y (=1 * 4
z := j * 4 i:=1i+1

7
N

b + a

4 * m

s
n




Example in SSA

i1 := a; + b,

® emmm S *
-« ll 4

/ N\,

1 (= & Y1 -

\ /

1 = a; + by

o = *

N
[

I

-
[

I




What about pointers?

* Pointers complicate SSA. Several options.

* Option 1: don’t use SSA for pointed to variables
« Option 2: adapt SSA to account for pointers

* Option 3: define src language so that variables
cannot be pointed to (eq: Java)



SSA helps us with CSE

* Let’'s see what else SSA can help us with

* Loop-invariant code motion



Loop-invariant code motion

« Two steps: analysis and transformations

« Stepl: find invariant computations in loop
— Invariant: computes same result each time evaluated

« Step 2: move them outside loop
— to top if used within loop: code hoisting
— to bottom if used after loop: code sinking



Example

N>y N
x x +
X > >
ot

N O =




Example

X * vy
::y*yé"/—’

w:=y+2é/
N

zZ
g9

w

= q + 1&—

9




Detecting loop Iinvariants

« An expression is invariant in a loop L Iff:

(base cases)
— it's a constant
— it's a variable use, all of whose defs are outside of L

(inductive cases)

— it's a pure computation all of whose args are loop-
iInvariant

— it's a variable use with only one reaching def, and the
rhs of that def is loop-invariant



Computing loop invariants

« Option 1: iterative dataflow analysis

— optimistically assume all expressions loop-invariant,
and propagate

* Option 2: build def/use chains

— follow chains to identify and propagate invariant
expressions

* Option 3: SSA
— like option 2, but using SSA instead of def/use chains



Example using def/use chains

X .

y

4

\Y

N N\

N
zZ :=x *y
q y *y
w =y + 2
l N

"

y
p :=w+y
Xx :=x +1
q:=q+1

* An expression is invariant
In a loop L iff:

(base cases)
— it's a constant

— it’'s a variable use, all of
whose defs are outside of L

(inductive cases)

— it's a pure computation all of
whose args are loop-invariant

— it's a variable use with only
one reaching def, and the rhs
of that def is loop-invariant



Example using def/use chains

3

{x

|~<
I

N
v =
¥

* An expression is invariant

In a loop L iff:

(base cases)
— it's a constant

— it’'s a variable use, all of
whose defs are outside of L

(inductive cases)

— it's a pure computation all of
whose args are loop-invariant

— it's a variable use with only
one reaching def, and the rhs
of that def is loop-invariant



Loop invariant detection using SSA

An expression is invariant in a loop L Iiff:

(base cases)
— it's a constant

— it's a variable use, all of whose single defs are outside
of L

(inductive cases)

— it's a pure computation all of whose args are loop-
iInvariant

— it's a variable use whose single reaching def, and the
rhs of that def is loop-invariant

¢ functions are not pure



Example using SSA

X, = 3
Y1 =<‘ /Yz =3

X, = 0(x,,%;)

Yz = 0(y¥1,¥2,Y3)

z, 1= X, ¥ y;

d; = Y3 *¥Y;

W, = y; + 2

w, :=w; + 5

Wy 1= ¢ (wy,wW,)

P = W3 + ¥y,

X, 1= x%x, +1

q, :=q; +1

An expression Is invariant in
a loop L iff:

(base cases)
— it's a constant

— it's a variable use, all of
whose single defs are outside
of L

(inductive cases)

— it's a pure computation all of
whose args are loop-invariant

— it's a variable use whose
single reaching def, and the
rhs of that def is loop-invariant

¢ functions are not pure



Example using SSA and preheader

X,

= 3

v

M

X, = ¢(x;,%3)
Z, X, * ¥
d, Ys * Y3
w;, = y; + 2
Wy 1= (W, W)
P: w; + Y3
X, x, + 1
q, :=q; +1

An expression Is invariant in
a loop L iff:

(base cases)
— it's a constant

— it's a variable use, all of
whose single defs are outside
of L

(inductive cases)

— it's a pure computation all of
whose args are loop-invariant

— it's a variable use whose
single reaching def, and the
rhs of that def is loop-invariant

¢ functions are not pure



Summary: Loop-invariant code motion

« Two steps: analysis and transformations

« Stepl: find invariant computations in loop
— Invariant: computes same result each time evaluated

« Step 2: move them outside loop
— to top if used within loop: code hoisting
— to bottom if used after loop: code sinking



Code motion

« Say we found an invariant computation, and we
want to move it out of the loop (to loop pre-
header)

 When is it legal?

* Need to preserve relative order of invariant
computations to preserve data flow among move
statements

* Need to preserve relative order between
Invariant computations and other computations



Example

nn n
=

i<

< o ee e

100 »

N

L S

X

+ N *

L, N U




Lesson from example: domination restriction

 To move statement S to loop pre-header, S must
dominate all loop exits
| A dominates B when all paths to B first pass through A ]

« Otherwise may execute S when never executed
otherwise

* If S Is pure, then can relax this constraint at cost
of possibly slowing down the program



Domination restriction in for loops




Domination restriction in for loops

Before After
Y
i:=0‘
Y
i < N?
K’
x :=a / b
1 := 1 + 1
Y




Avoiding domination restriction

* Domination restriction strict
— Nothing inside branch can be moved
— Nothing after a loop exit can be moved

« Can be circumvented through loop normalization
— while-do => if-do-while



Another example

Z
i




Data dependence restriction

 Tomove S:z := x op y:

S must be the only assignment to z in loop, and
no use of z in loop reached by any def other
than S

* Otherwise may reorder defs/uses



Avoiding data restriction

z :=5
i:=0
z =z + 1
z :=0
i:=1i+1
i1 <N?




Avoiding data restriction

z, : =5
i, :=0 ..
- Restriction unnecessary

l in SSA!
2, 1= 0(2,,2,) - Implementation of phi
1p := ""11'13) nodes as moves will
Z = Z .
o 02 cope with re-ordered
=
i =i, 41 defs/uses
i, < N ?




Summary of Data dependencies

« We've seen SSA, a way to encode data
dependencies better than just def/use chains
— makes CSE easier
— makes loop invariant detection easier
— makes code motion easier

 Now we move on to looking at how to encode
control dependencies



Control Dependencies

* A node (basic block) Y is control-dependent on
another X iff X determines whether Y executes

— there exists a path from X to Y s.t. every node in the
path other than X and Y is post-dominated by Y

— X is not post-dominated by Y



Control Dependencies

* A node (basic block) Y is control-dependent on
another X iff X determines whether Y executes

— there exists a path from X to Y s.t. every node in the
path other than X and Y is post-dominated by Y

— X is not post-dominated by Y
NOT porf - domimatid 8y Y

“LB:M QA oWA < \ QM dWWMWCLo{ LOV




Example

i=v /g
6 w > 07

5w

= 1 << w

7 Db




1y :=p+4g
2 x > 07
3a::=x*y 4 a =y
Sw::i=vy /g
6 x > 07
/b =1 << w

Cobrol olgpsngtarcy udction
% ey v 2



Control Dependence Graph

« Control dependence graph: Y descendent of X iff
Y Is control dependent on X
— label each child edge with required condition

— group all children with same condition under region
node

* Program dependence graph: super-impose
dataflow graph (in SSA form or not) on top of the
control dependence graph



Comdr o Al o lafron
5 M) a2

+ "6



Example

ly :=p+4g
2 5N 07
/F N
3a::==zx*[y 4 a =(y)- 2
\ v
5w =)/ g
6 w'\:
7 b =N\1 << (v
\ ™
8 r :=(al %\b




Another example

{
-
!
VAN




Another example

N,

B2 B3

B4




Another example

@YB = 0(y1, v2)7
(©) print(ys);

@j_2 = i3+ 1:

end




Summary of Control Depence Graph

* More flexible way of representing control-
depencies than CFG (less constraining)

« Makes code motion a local transformation

« However, much harder to convert back to an
executable form



Course summary so far

Dataflow analysis

— flow functions, lattice theoretic framework, optimistic iterative
analysis, precision, MOP

Advanced Program Representations
— SSA, CDG, PDG

Along the way, several analyses and opts

— reaching defns, const prop & folding, available exprs & CSE,
liveness & DAE, loop invariant code motion

Pointer analysis

— Andersen, Steensguaard, and long the way: flow-insensitive
analysis

Next: dealing with procedures



