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Another example: constant prop

• Set D =

X := N

in

out

FX := N(in) =

X := Y op Z

in

out

FX := Y op Z(in) =

Another example: constant prop

• Set D = 2 { x ! N | x 2 Vars Æ N 2 Z }

X := N

in

out

FX := N(in) = in – { X ! * } [ { X ! N }

X := Y op Z

in

out

FX := Y op Z(in) = in – { X ! * } [
{ X ! N | ( Y ! N1 ) 2 in Æ

( Z ! N2 ) 2 in Æ
N = N1 op N2 }

Another example: constant prop

*X := Y

in

out

F*X := Y(in) =

X := *Y

in

out

FX := *Y(in) =

Another example: constant prop

*X := Y

in

out

F*X := Y(in) = in – { Z ! * | Z 2 may-point(X) }

[ { Z ! N | Z 2 must-point-to(X) Æ
Y ! N 2 in }

[ { Z ! N | (Y ! N) 2 in Æ
(Z ! N) 2 in }

X := *Y

in

out

FX := *Y(in) = in – { X ! * }

[ { X ! N  | 8 Z 2 may-point-to(Y) .

(Z ! N) 2 in } 

Another example: constant prop

X := G(...)

in

out

FX := G(...)(in) =

*X := *Y + *Z

in

out

F*X := *Y + *Z(in) =

Another example: constant prop

X := G(...)

in

out

FX := G(...)(in) = ;

*X := *Y + *Z

in

out

F*X := *Y + *Z(in) = Fa := *Y;b := *Z;c := a + b; *X := c(in)
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Another example: constant prop

s: if (...)

in

out[0] out[1]

merge   

out

in[0] in[1]

Lattice

• (D, ⊑, ⊥, ⊤, ⊔, ⊓) =

Lattice

• (D, ⊑, ⊥, ⊤, ⊔, ⊓) = 

(2 A , ¶, A, ;, Å, [)

where A = { x ! N | x ∊ Vars Æ N ∊ Z }

Example

x := 5

v := 2

x := x + 1

w := v + 1

w := 3

y := x * 2

z := y + 5

w := w * v

Another Example

x := 5

a := x + 10

x := x + 1

x := x - 1

b := x + 10

Another Example starting at top

x := 5

a := x + 10

x := x + 1

x := x - 1

b := x + 10
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Back to lattice

• (D, ⊑, ⊥, ⊤, ⊔, ⊓) = 

(2 A , ¶, A, ;, Å, [)

where A = { x ! N | x ∊ Vars Æ N ∊ Z }

• What’s the problem with this lattice?

Back to lattice

• (D, ⊑, ⊥, ⊤, ⊔, ⊓) = 

(2 A , ¶, A, ;, Å, [)

where A = { x ! N | x ∊ Vars Æ N ∊ Z }

• What’s the problem with this lattice?

• Lattice is infinitely high, which means we can’t 

guarantee termination

Better lattice

• Suppose we only had one variable

Better lattice

• Suppose we only had one variable

• D = {⊥, ⊤ } [ Z

• 8 i ∊ Z . ⊥ ⊑ i Æ i ⊑ ⊤

• height = 3

For all variables

• Two possibilities

• Option 1: Tuple of lattices

• Given lattices (D1, v1, ?1, >1, t1, u1) ... (Dn, vn, ?n, >n, 

tn, un) create:

tuple lattice Dn =

For all variables

• Two possibilities

• Option 1: Tuple of lattices

• Given lattices (D1, v1, ?1, >1, t1, u1) ... (Dn, vn, ?n, >n, 

tn, un) create:

tuple lattice Dn = ((D1 £ ... £ Dn), v, ?, >, t, u) where

? = (?1, ..., ?n)

> = (>1, ..., >n)

(a1, ..., an) t (b1, ..., bn) = (a1 t1 b1, ..., an tn bn)

(a1, ..., an) u (b1, ..., bn) = (a1 u1 b1, ..., an un bn)

height = height(D1) + ... + height(Dn)
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For all variables

• Option 2: Map from variables to single lattice

• Given lattice (D, v1, ?1, >1, t1, u1) and a set V, create:

map lattice V ! D = (V ! D, v, ?, >, t, u) 

Back to example

X := Y op Z

in

out

FX := Y op Z(in) =

Back to example

X := Y op Z

in

out

FX := Y op Z(in) = in [ X ! in(Y) op in(Z) ]

where a op b = 

General approach to domain design

• Simple lattices:

– boolean logic lattice

– powerset lattice

– incomparable set: set of incomparable values, plus 

top and bottom (eg const prop lattice)

– two point lattice: just top and bottom

• Use combinators to create more complicated 

lattices

– tuple lattice constructor

– map lattice constructor

May vs Must

• Has to do with definition of computed info

• Set of x ! y must-point-to pairs

– if we compute x ! y, then, then during program 

execution, x must point to y

• Set of x! y may-point-to pairs

– if during program execution, it is possible for x to point 
to y, then we must compute x ! y

May vs must

May Must

most optimistic 

(bottom)

most conservative 

(top)

safe

merge
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May vs must

May Must

most optimistic 

(bottom)

empty set full set

most conservative 

(top)

full set empty set

safe overly big overly small

merge [ Å

Common Sub-expression Elim

• Want to compute when an expression is 

available in a var

• Domain:

Common Sub-expression Elim

• Want to compute when an expression is 

available in a var

• Domain:

Flow functions

X := Y op Z

in

out

FX := Y op Z(in) = 

X := Y

in

out

FX := Y(in) =

Flow functions

X := Y op Z

in

out

FX := Y op Z(in) = in – { X ! * } 

– { * ! ... X ... } [
{ X ! Y op Z  | X  Y Æ X  Z}

X := Y

in

out

FX := Y(in) = in – { X ! * } 

– { * ! ... X ... } [
{ X ! E  | Y ! E 2 in }

Example

x := read()

v := a + b

x := x + 1

w := x + 1

w := x + 1

a := w

v := a + b

z := x + 1

t := a + b
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Direction of analysis

• Although constraints are not directional, flow 
functions are

• All flow functions we have seen so far are in the 
forward direction

• In some cases, the constraints are of the form
in = F(out)

• These are called backward problems.

• Example: live variables
– compute the set of variables that may be live

Live Variables

• A variable is live at a program point if it will be 

used before being redefined

• A variable is dead at a program point if it is 

redefined before being used

Example: live variables

• Set D =

• Lattice: (D, v, ?, >, t, u)  =

Example: live variables

• Set D = 2 Vars

• Lattice: (D, v, ?, >, t, u) = (2Vars, µ, ; ,Vars, [, 

Å)

X := Y op Z

in

out

FX := Y op Z(out) =

Example: live variables

• Set D = 2 Vars

• Lattice: (D, v, ?, >, t, u) = (2Vars, µ, ; ,Vars, [, 

Å)

X := Y op Z

in

out

FX := Y op Z(out) = out – { X } [ { Y, Z}

Example: live variables

x := 5

y := x + 2

x := x + 1 y := x + 10

... y ...
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Example: live variables

x := 5

y := x + 2

x := x + 1 y := x + 10

... y ...How can we remove 
the x := x + 1 stmt?

Revisiting assignment

X := Y op Z

in

out

FX := Y op Z(out) = out – { X } [ { Y, Z}

Revisiting assignment

X := Y op Z

in

out

FX := Y op Z(out) = out – { X } [ { Y, Z}

Theory of backward analyses

• Can formalize backward analyses in two ways

• Option 1: reverse flow graph, and then run 

forward problem

• Option 2: re-develop the theory, but in the 

backward direction

Precision

• Going back to constant prop, in what cases 

would we lose precision?

Precision

• Going back to constant prop, in what cases 

would we lose precision?

if (p) {

x := 5;

} else

x := 4;

}

...

if (p) {

y := x + 1

} else {

y := x + 2

}

... y ...

if (...) {

x := -1;

} else

x := 1;

}

y := x * x;

... y ...

x := 5

if (<expr>) {

x := 6

}

... x ...

where <expr> is 

equiv to false
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Precision

• The first problem: Unreachable code

– solution: run unreachable code removal before

– the unreachable code removal analysis will do its 

best, but may not remove all unreachable code

• The other two problems are path-sensitivity 

issues

– Branch correlations: some paths are infeasible

– Path merging: can lead to loss of precision

MOP: meet over all paths

• Information computed at a given point is the 

meet of the information computed by each path 

to the program point

if (...) {

x := -1;

} else

x := 1;

}

y := x * x;

... y ...

MOP

• For a path p, which is a sequence of statements 

[s1, ..., sn] , define: Fp(in) = Fsn
( ...Fs1

(in) ... )

• In other words: Fp = 

• Given an edge e, let paths-to(e) be the (possibly 

infinite) set of paths that lead to e

• Given an edge e, MOP(e) = 

• For us, should be called JOP (ie: join, not meet)

MOP vs. dataflow

• MOP is the “best” possible answer, given a fixed 

set of flow functions

– This means that MOP v dataflow at edge in the CFG

• In general, MOP is not computable (because 

there can be infinitely many paths)

– vs dataflow which is generally computable (if flow fns 

are monotonic and height of lattice is finite)

• And we saw in our example, in general,

MOP  dataflow 

MOP vs. dataflow

• However, it would be great if by imposing some 

restrictions on the flow functions, we could 

guarantee that dataflow is the same as MOP. 

What would this restriction be?

x := -1;

y := x * x;

... y ...

x := 1;

y := x * x;

... y ...

Merge

x := -1; x := 1;

Merge

y := x * x;

... y ...

Dataflow MOP

MOP vs. dataflow

• However, it would be great if by imposing some 

restrictions on the flow functions, we could 

guarantee that dataflow is the same as MOP. 

What would this restriction be?

• Distributive problems. A problem is distributive if:

8 a, b . F(a t b) = F(a) t F(b)

• If flow function is distributive, then MOP = 

dataflow
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Summary of precision

• Dataflow is the basic algorithm

• To basic dataflow, we can add path-separation
– Get MOP, which is same as dataflow for distributive 

problems

– Variety of research efforts to get closer to MOP for 
non-distributive problems

• To basic dataflow, we can add path-pruning
– Get branch correlation

• To basic dataflow, can add both: 
– meet over all feasible paths


