
1

Formalization of DFA using lattices

Recall worklist algorithm

let m: map from edge to computed value at edge

let worklist: work list of nodes

for each edge e in CFG do

m(e) := ;

for each node n do

worklist.add(n)

while (worklist.empty.not) do

let n := worklist.remove_any;

let info_in := m(n.incoming_edges);

let info_out := F(n, info_in);

for i := 0 .. info_out.length do

let new_info := m(n.outgoing_edges[i]) [
info_out[i];

if (m(n.outgoing_edges[i])  new_info])

m(n.outgoing_edges[i]) := new_info;

worklist.add(n.outgoing_edges[i].dst);

Using lattices

• We formalize our domain with a powerset lattice

• What should be top and what should be bottom?

Using lattices

• We formalize our domain with a powerset lattice

• What should be top and what should be bottom?

• Does it matter?

– It matters because, as we’ve seen, there is a notion of

approximation, and this notion shows up in the lattice

Using lattices

• Unfortunately:

– dataflow analysis community has picked one direction

– abstract interpretation community has picked the

other

• We will work with the abstract interpretation

direction

• Bottom is the most precise (optimistic) answer,

Top the most imprecise (conservative)

Direction of lattice

• Always safe to go up in the lattice

• Can always set the result to >

• Hard to go down in the lattice

• Bottom will be the empty set in reaching defs

2

Worklist algorithm using lattices

let m: map from edge to computed value at edge

let worklist: work list of nodes

for each edge e in CFG do

m(e) := ?

for each node n do

worklist.add(n)

while (worklist.empty.not) do

let n := worklist.remove_any;

let info_in := m(n.incoming_edges);

let info_out := F(n, info_in);

for i := 0 .. info_out.length do

let new_info := m(n.outgoing_edges[i]) t
info_out[i];

if (m(n.outgoing_edges[i])  new_info])

m(n.outgoing_edges[i]) := new_info;

worklist.add(n.outgoing_edges[i].dst);

Termination of this algorithm?

• For reaching definitions, it terminates...

• Why?

– lattice is finite

• Can we loosen this requirement?

– Yes, we only require the lattice to have a finite height

• Height of a lattice: length of the longest

ascending or descending chain

• Height of lattice (2S, µ) =

Termination of this algorithm?

• For reaching definitions, it terminates...

• Why?

– lattice is finite

• Can we loosen this requirement?

– Yes, we only require the lattice to have a finite height

• Height of a lattice: length of the longest

ascending or descending chain

• Height of lattice (2S, µ) = | S |

Termination

• Still, it’s annoying to have to perform a join in the worklist
algorithm

• It would be nice to get rid of it, if there is a property of the
flow functions that would allow us to do so

while (worklist.empty.not) do

let n := worklist.remove_any;

let info_in := m(n.incoming_edges);

let info_out := F(n, info_in);

for i := 0 .. info_out.length do

let new_info := m(n.outgoing_edges[i]) t
info_out[i];

if (m(n.outgoing_edges[i])  new_info])

m(n.outgoing_edges[i]) := new_info;

worklist.add(n.outgoing_edges[i].dst);

Even more formal

• To reason more formally about termination and

precision, we re-express our worklist algorithm

mathematically

• We will use fixed points to formalize our

algorithm

Fixed points

• Recall, we are computing m, a map from edges

to dataflow information

• Define a global flow function F as follows: F

takes a map m as a parameter and returns a

new map m’, in which individual local flow

functions have been applied

3

Fixed points

• We want to find a fixed point of F, that is to
say a map m such that m = F(m)

• Approach to doing this?

• Define ?, which is ? lifted to be a map:

? =  e. ?
• Compute F(?), then F(F(?)), then

F(F(F(?))), ... until the result doesn’t
change anymore

Fixed points

• Formally:

• Outer join has same role here as in worklist

algorithm: guarantee that results keep increasing

• BUT: if the sequence Fi(?) for i = 0, 1, 2 ... is

increasing, we can get rid of the outer join!

• How? Require that F be monotonic:

– 8 a, b . a v b) F(a) v F(b)

Fixed points Fixed points

Back to termination

• So if F is monotonic, we have what we want:
finite height) termination, without the outer join

• Also, if the local flow functions are monotonic,

then global flow function F is monotonic

Another benefit of monotonicity

• Suppose Marsians came to earth, and

miraculously give you a fixed point of F, call it fp.

• Then:

4

Another benefit of monotonicity

• Suppose Marsians came to earth, and

miraculously give you a fixed point of F, call it fp.

• Then:

Another benefit of monotonicity

• We are computing the least fixed point...

Recap

• Let’s do a recap of what we’ve seen so far

• Started with worklist algorithm for reaching

definitions

Worklist algorithm for reaching defns

let m: map from edge to computed value at edge

let worklist: work list of nodes

for each edge e in CFG do

m(e) := ;

for each node n do

worklist.add(n)

while (worklist.empty.not) do

let n := worklist.remove_any;

let info_in := m(n.incoming_edges);

let info_out := F(n, info_in);

for i := 0 .. info_out.length do

let new_info := m(n.outgoing_edges[i]) [
info_out[i];

if (m(n.outgoing_edges[i])  new_info])

m(n.outgoing_edges[i]) := new_info;

worklist.add(n.outgoing_edges[i].dst);

Generalized algorithm using lattices

let m: map from edge to computed value at edge

let worklist: work list of nodes

for each edge e in CFG do

m(e) := ?

for each node n do

worklist.add(n)

while (worklist.empty.not) do

let n := worklist.remove_any;

let info_in := m(n.incoming_edges);

let info_out := F(n, info_in);

for i := 0 .. info_out.length do

let new_info := m(n.outgoing_edges[i]) t
info_out[i];

if (m(n.outgoing_edges[i])  new_info])

m(n.outgoing_edges[i]) := new_info;

worklist.add(n.outgoing_edges[i].dst);

Next step: removed outer join

• Wanted to remove the outer join, while still
providing termination guarantee

• To do this, we re-expressed our algorithm more
formally

• We first defined a “global” flow function F, and
then expressed our algorithm as a fixed point
computation

5

Guarantees

• If F is monotonic, don’t need outer join

• If F is monotonic and height of lattice is finite:

iterative algorithm terminates

• If F is monotonic, the fixed point we find is the

least fixed point.

What about if we start at top?

• What if we start with >: F(>), F(F(>)), F(F(F(>)))

What about if we start at top?

• What if we start with >: F(>), F(F(>)), F(F(F(>)))

• We get the greatest fixed point

• Why do we prefer the least fixed point?

– More precise

Graphically

x

y

10

10

Graphically

x

y

10

10

Graphically

x

y

10

10

6

Graphically, another way

