Background material

Relations

- A relation over a set S is a set $R \subseteq S \times S$
 - We write a R b for (a,b) $\in R$
- · A relation R is:
 - reflexive iff
 - $\forall \ a \in S . \ a \ R \ a$
 - transitive iff
 - $\forall \ a \in S, b \in S, c \in S \ . \ a \ R \ b \wedge b \ R \ c \Rightarrow a \ R \ c$
 - symmetric iff
 - \forall a, b \in S . a R b \Rightarrow b R a
 - anti-symmetric iff

 \forall a, b, \in S . a R b $\Rightarrow \neg$ (b R a)

2

Relations

- A relation over a set S is a set R ⊆ S × S
 We write a R b for (a,b) ∈ R
- · A relation R is:
 - reflexive iff
 - $\forall a \in S . a R a$
 - transitive iff

 $\forall \ a \in S, \, b \in S, \, c \in S \; . \; a \; R \; b \; \land b \; R \; c \Rightarrow a \; R \; c$

- symmetric iff
- $\forall \ a,\, b \in S \ . \ a \ R \ b \Rightarrow b \ R \ a$
- anti-symmetric iff

 \forall a, b, \in S . a R b $\Rightarrow \neg$ (b R a)

 $\forall \ a, \ b, \in S \ . \ a \ R \ b \wedge b \ R \ a \Rightarrow a = b$

Partial orders

- · An equivalence class is a relation that is:
- · A partial order is a relation that is:

3

Partial orders

- · An equivalence class is a relation that is:
 - reflexive, transitive, symmetric
- A partial order is a relation that is:
 - reflexive, transitive, anti-symmetric
- A partially ordered set (a poset) is a pair (S,≤) of a set S and a partial order ≤ over the set
- Examples of posets: (2s, \subseteq), (Z, \le), (Z, divides)

Lub and glb

- Given a poset (S, ≤), and two elements a ∈ S and b ∈ S, then the:
 - least upper bound (lub) is an element c such that $a\leq c,\, b\leq c,$ and $\forall\; d\in S$. (a $\leq d\wedge b\leq d)\Rightarrow c\leq d$
 - greatest lower bound (glb) is an element c such that $c \leq a,\, c \leq b,$ and $\forall \; d \in S$. (d $\leq a \land d \leq b) \Rightarrow d \leq c$

5

1

Lub and glb

- Given a poset (S, ≤), and two elements a ∈ S and b ∈ S, then the:
 - least upper bound (lub) is an element c such that $a \le c, b \le c,$ and $\forall d \in S$. $(a \le d \land b \le d) \Rightarrow c \le d$
 - greatest lower bound (glb) is an element c such that $c\leq a,\,c\leq b,$ and $\forall\;d\in S$. (d $\leq a\wedge d\leq b)\Rightarrow d\leq c$
- · lub and glb don't always exists:

7

Lub and glb

- Given a poset (S, ≤), and two elements a ∈ S and b ∈ S, then the:
 - least upper bound (lub) is an element c such that $a \le c, b \le c,$ and $\forall d \in S$. $(a \le d \land b \le d) \Rightarrow c \le d$
 - greatest lower bound (glb) is an element c such that $c\leq a,\,c\leq b,$ and $\forall\;d\in S$. (d $\leq a\wedge d\leq b)\Rightarrow d\leq c$
- · lub and glb don't always exists:

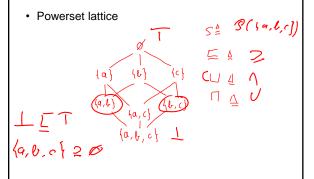
8

Lattices

- A lattice is a tuple (S, \sqsubseteq , \bot , \top , \sqcup , \sqcap) such that:
 - (S, \sqsubseteq) is a poset
 - $\forall \ a \in S \ . \perp \sqsubseteq a$
 - \forall a ∈ S . a \sqsubseteq \top
 - Every two elements from S have a lub and a glb
 - ⊔ is the least upper bound operator, called a join
 - □ is the greatest lower bound operator, called a meet

9

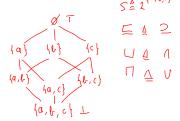
Examples of lattices



10

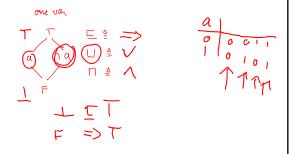
Examples of lattices

Powerset lattice



Examples of lattices

· Booleans expressions



11 12

2

Examples of lattices

· Booleans expressions

Examples of lattices

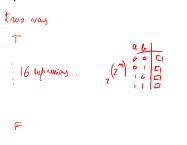
· Booleans expressions

14

13

Examples of lattices

Booleans expressions



15