
Advanced Compiler Design

CSE 231

Instructor: Sorin Lerner



Let’s look at a compiler

if (…) {

x := …;

} else {

y := …;

}

…;

ExecCompilerParser
Code

Gen

Compiler

Optimizer



Parser
Code

Gen

Compiler

Parser
Code

Gen

Compiler

Let’s look at a compiler

Optimizer



Advanced Optimizer Design

CSE 231

Instructor: Sorin Lerner



What does an optimizer do?

1.Compute information about a program

2.Use that information to perform program 

transformations 
(with the goal of improving some metric, e.g. performance)

Parser
Code

Gen

Compiler

Optimizer



What do these tools have in common?

• Bug finders

• Program verifiers

• Code refactoring tools

• Garbage collectors

• Runtime monitoring system

• And… optimizers



What do these tools have in common?

• Bug finders

• Program verifiers

• Code refactoring tools

• Garbage collectors

• Runtime monitoring system

• And… optimizers

They all analyze and transform programs

We will learn about the techniques underlying all 

these tools



Program Analyses, Transformations,

and Applications

CSE 231

Instructor: Sorin Lerner



Course goals

• Understand basic techniques

– cornerstone of a variety of program analysis tools

– useful no matter what your future path

• Get a feel for compiler research/implementation

– useful for research-oriented students

– useful for implementation-oriented students



Course topics

• Representing programs 

• Analyzing and transforming programs

• Applications of these techniques



Course topics (more details)

• Representations

– Abstract Syntax Tree

– Control Flow Graph

– Dataflow Graph

– Static Single Assignment

– Control Dependence Graph

– Program Dependence Graph

– Call Graph



Course topics (more details)

• Analysis/Transformation Algorithms

– Dataflow Analysis

– Interprocedural analysis 

– Pointer analysis



Course topics (more details)

• Applications

– Scalar optimizations

– Loop optimizations

– Object oriented optimizations

– Program verification

– Bug finding



Course pre-requisites

• No compilers background necessary

• No familiarity with lattices

– I will review what is necessary in class

• Familiarity with functional/OO programming

– Optimization techniques for these kinds of languages

• Know C/C++ or an object oriented language

– Project will be in C++

• Standard ugrad cs curriculum likely enough

– Talk to me if you’re concerned



Course work

• In-class midterm (30%)

– Date posted on web site

• In-class midterm (30%)

– Date posted on web site

• Course project (40%)



Course project

• Goal of the project

– Get some hands on experience with compilers

– Two options, most will do option 1 

• Option 1: LLVM project

– Implement some analyses in LLVM, three milestones

– Hand in your code and it’s auto-graded

• Option 2: Research (by instructor approval)

– Pick some interesting idea, and try it out

– Proposals due at the beginning of the second week

– Can leverage your existing research



LLVM Project

• M1: Simple instrumentation

• M2: Analysis framework

• M3: Implement Analyses in framework

• You will extend LLVM. This will require C++

– If you don’t know C++, you should be super confident 

that you can learn it. Otherwise, drop the class

• To be done alone



Research Project

• Requires instructor approval

– You need to come up with your own idea…

– … by the end of week 1

– Most students doing this will be PhD students

– It’s ok to leverage or overlap with existing research

• To be done alone

• I envision at most 10 people doing this



Readings

• Paper readings throughout the quarter

• Seminal papers and state of the art

• Gives you historical perspective

• Shows you lineage from idea to practice



Administrative info

• Class web page is up

– https://ucsd-pl.github.io/cse231/wi19/

– (or Google “Sorin Lerner”, follow “Teaching Now”)

– Will post lectures, readings, project info, etc.

• Piazza link on web page

– Use for questions, answers

– Especially LLVM/project Q&A 



Academic Integrity

• Governed by Policy on Integrity of Scholarship 
(http://senate.ucsd.edu/Operating-Procedures/Senate-

Manual/Appendices/2)

• Allegations are handled by Academic Integrity 

Office (https://students.ucsd.edu/academics/academic-integrity)

• Course penalty for cheating in 231 may result in 

failing the assignment or the entire class

• Cheaters may be subject to additional 

administrative sanctions



Questions?



Program Analyzer Issues (discuss)

Program

Analyzer
Input Output



Program Analyzer Issues (discuss)

Program

Analyzer
Input Output



Program Analyzer Issues (discuss)

Program

Analyzer
Input Output



Input issues

• Input is a program, but…

• What language is the program written in?

– imperative vs. functional vs. object-oriented? maybe 

even declarative?

– what pointer model does the language use?

– reflection, exceptions, continuations?

– type system trusted or not?

– one often analyzes an intermediate language... how 

does one design such a language?

Instructor’s discussion notes

Program

Analyzer
Input Output



Input issues

• How much of the program do we see?

– all?

– one file at a time?

– one library at a time?

– reflection…

• Any additional inputs?

– any human help?

– profile info?

Instructor’s discussion notes

Program

Analyzer
Input Output



Analysis issues

• Analysis/compilation model
– Separate compilation/analysis

• quick, but no opportunities for interprocedural analysis

– Link-time

• allows interprocedural and whole program analysis

• but what about shared precompiled libraries?

• and what about compile-time?

– Run-time

• best optimization/analysis potential (can even use run-time state as 
additional information)

• can handle run-time extensions to the program

• but severe pressure to limit compilation time

– Selective run-time compilation

• choose what part of compilation to delay until run-time

• can balance compile-time/benefit tradeoffs

Instructor’s discussion notes

Program

Analyzer
Input Output



Analysis issues

• Does running-time matter?

– for use in IDE? 

– or in overnight compile?

Instructor’s discussion notes

Program

Analyzer
Input Output



Output issues

• Form of output varies widely, depending on 
analysis
– alias information

– constantness information

– loop terminates/does not terminate

• Correctness of analysis results
– depends on what the results are used for

– are we attempting to design algorithms for solving 
undecidable problems?

– notion of approximation

– statistical output

Instructor’s discussion notes

Program

Analyzer
Input Output



Program Transformation Issues (discuss)

Program

Transformer
Input Output



Input issues

• A program, and …

• Program analysis results

• Profile info?

• Environment: # of CPUs, # of cores/CPU, cache 

size, etc.

• Anything else?

Instructor’s discussion notes

Program

Transformer
Input Output



Transformation issues

• What is profitable?

• What order to perform transformations?

• What happens to the program representation? 

• What happens to the computed information? For 

example alias information? Need to recompute?

Instructor’s discussion notes

Program

Transformer
Input Output



Output issues

• Output in same IL as input?

• Should the output program behave the same 

way as the input program?

Instructor’s discussion notes

Program

Transformer
Input Output


