
 Introduction to LLVM

Zhaomo Yang
January 11, 2018

Architecture of LLVM

Front-end Back-endOptimizer

Architecture of LLVM

Front-end Back-endOptimizer

LLVM Optimizer
The optimizer analyzes, optimizes and secures programs.

The optimizer operates on LLVM Intermediate Representation (IR) code, which
makes it source- and target-independent.

Functionalities are implemented as passes.

Optimizer Passes
A pass is an operation on a unit of LLVM Intermediate Representation (IR) code.

There are multiple types of passes:

- ModulePass, CallGraphSCCPass, FunctionPass, LoopPass, RegionPass,
BasicBlockPass

Optimizer Passes
A pass is an operation on a unit of LLVM Intermediate Representation (IR) code.

There are multiple types of passes:

- ModulePass, CallGraphSCCPass, FunctionPass, LoopPass, RegionPass,
BasicBlockPass

How to write a function pass:
http://releases.llvm.org/5.0.1/docs/WritingAnLLVMPass.html#writing-an-llvm-pass-
basiccode

http://releases.llvm.org/5.0.1/docs/WritingAnLLVMPass.html#writing-an-llvm-pass-basiccode
http://releases.llvm.org/5.0.1/docs/WritingAnLLVMPass.html#writing-an-llvm-pass-basiccode

LLVM IR
- A low-level strongly-typed language-independent, SSA-based

representation.
- Tailored for static analyses and optimization purposes.
- LLVM IR language reference: http://releases.llvm.org/5.0.1/docs/LangRef.html

http://releases.llvm.org/5.0.1/docs/LangRef.html

LLVM IR

Hierarchy of structures of IR programs

Module

Function

Basic Block

Instruction

A module == A compilation unit
gcc -c mytest.c -o mytest.o

The compilation unit consists of

- Code in mytest.c
- Code that is included in mytest.c (#include ...)

Project Part 1 overview
There are three sections:

- Count Static Instructions
- Count Dynamic Instructions
- Branch Profiling

Project Part 1 overview
There are three sections:

- Count Static Instructions: analysis pass
- Count Dynamic Instructions: transformation pass
- Branch Profiling: transformation pass

Project Part 1 overview
There are three sections:

- Count Static Instructions: analysis pass
- Count Dynamic Instructions: transformation pass
- Branch Profiling: transformation pass

How an analysis pass works

test.c

void foo (uint32_t int,
 uint32_t * p) {
 ...
}

 Clang

test.bc

LLVM IR opt

mypass.so

stderr

LLVM IR

Count Static Instructions
How to traverse a function (and how to write to stderr)

http://releases.llvm.org/5.0.1/docs/ProgrammersManual.html#basic-inspection-and
-traversal-routines

http://releases.llvm.org/5.0.1/docs/ProgrammersManual.html#basic-inspection-and-traversal-routines
http://releases.llvm.org/5.0.1/docs/ProgrammersManual.html#basic-inspection-and-traversal-routines

Project Part 1 overview
There are three sections:

- Count Static Instructions: analysis pass
- Count Dynamic Instructions: transformation pass
- Branch Profiling: transformation pass

LLVM IR

How a transformation pass works

test.cpp

Void foo (uint32_t int,
 uint32_t * p) {
 ...
}

Clang++
test.bc

LLVM IR opt

mypass.so

main.cpp

Int main () {
 ...
 foo ()
 ...
}

main.bc

LLVM IR

test-ins.bc

LLVM IR

lib.cpp

lib.bc

LLVM IR

Clang++

Executable

How to insert a function call to IR code
First of all, we need to find the function we want to call.

- Class Function represents functions in IR programs
- How can we get a handle of the function?

How to insert a function call to IR code
First of all, we need to find the function we want to call.

- Class Function represents functions in IR programs
- How can we get a handle of the function?

How to use getOrInsertFunction

How to prepare arguments for a function call
If you need a constant integer

- ConstantInt represents boolean and integer constants
- From Class ConstantInt

How to prepare arguments for a function call
If you need a constant integer

- How to get the type of the constant integer?

How to prepare arguments for a function call
If you need a pointer to a constant array

- Allocate the array somewhere in the address space

The easiest way to do it is to put the array in the static region.

Class GlobalVariable represents static and global variables of a program.

How to prepare arguments for a function call
Class GlobalVariable represents static and global variables of a program.

This constructor has quite a few parameters but luckily many of them have a
default value that we don’t need to change.

How to prepare arguments for a function call
Class GlobalVariable represents static and global variables of a program.

How to prepare arguments for a function call
Class GlobalVariable represents static and global variables of a program.

“Because GlobalValues are memory objects, they are always referred to by their
address. As such, the Type of a global is always a pointer to its contents.”

http://releases.llvm.org/5.0.1/docs/ProgrammersManual.html#the-globalvariable-cl
ass

http://releases.llvm.org/5.0.1/docs/ProgrammersManual.html#the-globalvariable-class
http://releases.llvm.org/5.0.1/docs/ProgrammersManual.html#the-globalvariable-class

How to insert a function call
Now that we have the function handle and the arguments, we can finally insert a
function call.

Class IRBuilder can be used for insert instructions into a basic block.

- First, we need to specify where we want to insert the instruction

Either use function SetInsertPoint or specify the insert point in the constructor of
IRBuilder (which will call SetInsertPoint).

How to insert a function call
Now that we have the function handle and the arguments, we can finally insert a
function call.

Class IRBuilder can be used for insert instructions into a basic block.

- First, we need to specify where we want to insert the instruction
- Second, we need to create the IR call instruction

Use IRBuilder::CreateCall

Tips
- Learn from other use cases of the API in the code base
- Read the comments above the definition/declaration of the function you want

to use
- Use an IDE (“Open Declaration” and “Open Call Hierarchy”)
- Read the code of the function you want to use

Links
- How to write a basic function pass

http://releases.llvm.org/5.0.1/docs/WritingAnLLVMPass.html

- Developer Tutorial: covering many common operations

http://releases.llvm.org/5.0.1/docs/ProgrammersManual.html

- Our tutorial

https://ucsd-pl.github.io/cse231/wi18/tutorials/part1.html

http://releases.llvm.org/5.0.1/docs/WritingAnLLVMPass.html
http://releases.llvm.org/5.0.1/docs/ProgrammersManual.html
https://ucsd-pl.github.io/cse231/wi18/tutorials/part1.html

