
Dataflow Analysis Project
Zhaomo Yang

Overview
For part 2 and part 3 of the project, we are going to implement a generic dataflow
analysis framework and three analyses based on it.

Part 2: the dataflow analysis framework and reaching definition analysis

Part 3: liveness analysis and may-point-to analysis

Difference between part 1 and part 2 & 3
Part 1:

- Figuring out how to use LLVM APIs

Part 2 & 3:

- Generic C++ programming
- Implementing algorithms and analyses we learned in the class

Part 2
- Dataflow analysis framework
- Reaching definition

Part 2
- Dataflow analysis framework
- Reaching definition

Dataflow Analysis Framework
Goal: implementing a generic bottom-up intra-procedural dataflow analysis
framework

Dataflow Analysis Framework

Dataflow Analysis Framework

Dataflow Analysis Framework

To instantiate a specific analysis, a generic dataflow analysis framework needs
the six elements above.

Dataflow Analysis Framework

To instantiate a specific analysis, a generic dataflow analysis framework needs
the six elements above.

Since our framework is a bottom-up framework, do we need all of them?

Dataflow Analysis Framework

To instantiate a specific analysis, a generic dataflow analysis framework needs
the six elements above.

Since our framework is a bottom-up framework, do we need all of them?

Dataflow Analysis Framework
We provide an incomplete base template class To create a
dataflow analysis based on the base class , you need to
provide:

- class Info: the class that represents the information at each program point;

- bool Direction: the direction of analysis. If it is true, then the analysis is a
forward analysis; otherwise it is a backward analysis.

- Info InitialState: the input of the very first instruction of the analysis.
- Info Bottom: the bottom of the lattice.

Dataflow Analysis Framework
We provide an incomplete base template class To create a
dataflow analysis based on the base class , you need to
provide:

- class Info: the class that represents the information at each program point;

- bool Direction: the direction of analysis. If it is true, then the analysis is a
forward analysis; otherwise it is a backward analysis.

- Info InitialState: the input of the very first instruction of the analysis.
- Info Bottom: the bottom of the lattice.

To instantiate a forward analysis called MyForwardAnalysis

Dataflow Analysis Framework
We provide an incomplete base template class To create a
dataflow analysis based on the base class , you need to
provide:

- class Info: the class that represents the information at each program point;

- bool Direction: the direction of analysis. If it is true, then the analysis is a
forward analysis; otherwise it is a backward analysis.

- Info InitialState: the input of the very first instruction of the analysis.
- Info Bottom: the bottom of the lattice.

To instantiate a forward analysis called MyForwardAnalysis

Static Single Assignment (SSA)
Static Single Assignment (SSA) is a form of program in which

- each variable is assigned exactly once, and
- every variable is defined before it is used

SSA can enable many optimizations so many compiler IRs are in the SSA form.

 …
x = 100;

 a = x * 3;
 …

x = 1000;
b = x + 10;

 …
x = 100;

 a = x * 3;
 …

x = 1000;
b = x + 10;

 …
x1 = 100;

 a = x1 * 3;
 …

x2 = 1000;
b = x2 + 10;

Non-SSA form SSA form

...
if a > 100

x = 10; x = 11;

b = x * 2;
...

...
if a > 100

x = 10; x = 11;

b = x * 2;
...

Non-SSA form

1

2 3

4

...
if a > 100

x1 = 10; x = 11;

b = x * 2;
...

SSA form

1

2 3

4

...
if a > 100

x = 10; x = 11;

b = x * 2;
...

Non-SSA form

1

2 3

4

...
if a > 100

x1 = 10; x2 = 11;

b = x * 2;
...

SSA form

1

2 3

4

...
if a > 100

x = 10; x = 11;

b = x * 2;
...

Non-SSA form

1

2 3

4

...
if a > 100

x1 = 10; x2 = 11;

b = x * 2;
...

SSA form

1

2 3

4 Which version
of x should
we use???

Static Single Assignment (SSA)
A form of program that can enable many optimizations

- each variable is assigned exactly once
- every variable is defined before it is used
- Insert ɸ (phi) nodes at merge points

Phi nodes can magically synthesize values from different sources.

...
if a > 100

x = 10; x = 11;

b = x * 2;
...

Non-SSA form

1

2 3

4

...
if a > 100

x1 = 10; x2 = 11;

x3= ɸ(x1+x2);

b = x3 * 2;
...

SSA form

1

2 3

4

LLVM IR and SSA
LLVM IR is in the SSA form

- Each variable is only defined by one instruction
- Each instruction can define at most one variable
- We assign an index to each instruction

We can use instruction indices to refer to variables. That is, variable x is the value
defined by the instruction whose index is x.

LLVM IR and SSA
LLVM IR is in the SSA form

- Each variable is only defined by one instruction
- Each instruction can define at most one variable
- We assign an index to each instruction

The instruction from LLVM IR represents phi nodes in LLVM IR.

Control Flow Graph
There are two kinds of control flow graphs:

- LLVM CFGs
- DFA CFGs

Control Flow Graph
There are two kinds of control flow graphs:

- LLVM CFGs: built by LLVM.

An LLVM CFG of a function is available when your function pass is running on that
function.

Control Flow Graph
There are two kinds of control flow graphs:

- DFA CFGs: CFGs built and used by the dataflow analysis framework.

 in 231DFA.h builds a DFA CFG of the given
function for forward analyses.

LLVM CFG VS. DFA CFG
First, in a DFA CFG any instruction may have more than one incoming data flows,
as is shown below

LLVM CFG VS. DFA CFG
Second, in a DFA CFG, the instructions at the beginning of a merging basic
block are treated as a unit.

There are k phi instructions
at the start of the basic
block C.

In the LLVM CFG, these
phi instructions are
connected sequentially.

In the DFA CFG, has
an outgoing edge connecting
to the first non-phi instruction

 directly.

When encountering a phi
instruction, the flow function
should process the series of
phi instructions together
(effectively a PHI node from
the lecture) rather than
process each phi instruction
individually.

This means that the flow
function needs to look at the
LLVM CFG to iterate through
all the later phi instructions
at the beginning of the same
basic block until the first
non-phi instruction.

Only one correct answer
You have to use the exact flow functions we specified in the webpage.

Given these flow functions, you have to get the most precise result for each
edge.

