
1

Interprocedural analyses and

optimizations

Costs of procedure calls

• Up until now, we treated calls conservatively:

– make the flow function for call nodes return top

– start iterative analysis with incoming edge of the CFG

set to top

– This leads to less precise results: “lost-precision” cost

• Calls also incur a direct runtime cost

– cost of call, return, argument & result passing, stack

frame maintainance

– “direct runtime” cost

Addressing costs of procedure calls

• Technique 1: try to get rid of calls, using inlining

and other techniques

• Technique 2: interprocedural analysis, for calls

that are left

Inlining

• Replace call with body of callee

• Turn parameter- and result-passing into

assignments

– do copy prop to eliminate copies

• Manage variable scoping correctly

– rename variables where appropriate

Program representation for inlining

• Call graph

– nodes are procedures

– edges are calls, labelled by

invocation counts/frequency

• Hard cases for builing call

graph

– calls to/from external routines

– calls through pointers, function

values, messages

• Where in the compiler should

inlining be performed?

Inlining pros and cons (discussion)

2

Inlining pros and cons

• Pros
– eliminate overhead of call/return sequence

– eliminate overhead of passing args & returning results

– can optimize callee in context of caller and vice versa

• Cons
– can increase compiled code space requirements

– can slow down compilation

– recursion?

• Virtual inlining: simulate inlining during analysis
of caller, but don’t actually perform the inlining

Which calls to inline (discussion)

• What affects the decision as to which calls to

inline?

Which calls to inline

• What affects the decision as to which calls to

inline?

– size of caller and callee (easy to compute size before

inlining, but what about size after inlining?)

– frequency of call (static estimates or dynamic profiles)

– call sites where callee benefits most from optimization

(not clear how to quantify)

– programmer annotations (if so, annotate procedure or

call site? Also, should the compiler really listen to the

programmer?)

Inlining heuristics

• Strategy 1: superficial analysis

– examine source code of callee to estimate space

costs, use this to determine when to inline

– doesn’t account for post-inlining optimizations

• How can we do better?

Inlining heuristics

• Strategy 2: deep analysis

– perform inlining

– perform post-inlining analysis/optimizations

– estimate benefits from opts, and measure code space

after opts

– undo inlining if costs exceed benefits

– better accounts for post-inlining effects

– much more expensive in compile-time

• How can we do better?

Inlining heuristics

• Strategy 3: amortized version of 2

[Dean & Chambers 94]

– perform strategy 2: an inlining “trial”

– record cost/benefit trade-offs in persistent database

– reuse previous cost/benefit results for “similar” call

sites

3

Inlining heuristics

• Strategy 4: use machine learning techniques

• For example, use genetic algorithms to evolve

heuristics for inlining

– fitness is evaluated on how well the heuristics do on a

set of benchmarks

– cross-populate and mutate heuristics

• Can work surprisingly well to derive various

heuristics for compilers

Another way to remove procedure calls

int f(...) {

if (...) return g(...);

...

return h(i(....), j(...));

}

Tail call eliminiation

• Tail call: last thing before return is a call

– callee returns, then caller immediately returns

• Can splice out one stack frame creation and

destruction by jumping to callee rather than

calling

– callee reuses caller’s stack frame & return address

– callee will return directly to caller’s caller

– effect on debugging?

Tail recursion elimination

• If last operation is self-recursive call, what does

tail call elimination do?

Tail recursion elimination

• If last operation is self-recursive call, what does

tail call elimination do?

• Transforms recursion into loop: tail recursion

elimination

– common optimization in compilers for functional

languages

– required by some language specifications, eg

Scheme

– turns stack space usage from O(n) to O(1)

Addressing costs of procedure calls

• Technique 1: try to get rid of calls, using inlining

and other techniques

• Technique 2: interprocedural analysis, for calls

that are left

4

Interprocedural analysis

• Extend intraprocedural analyses to work across

calls

• Doesn’t increase code size

• But, doesn’t eliminate direct runtime costs of

call

• And it may not be as effective as inlining at

cutting the “precision cost” of procedure calls

A simple approach (discussion)

A simple approach

• Given call graph and CFGs of procedures,
create a single CFG (control flow super-graph)
by:
– connecting call sites to entry nodes of callees (entries

become merges)

– connecting return nodes of callees back to calls
(returns become splits)

• Cons:
– speed?

– separate compilation?

– imprecision due to “unrealizable paths”

Another approach: summaries (discussion)

Code examples for discussion

global a;

a := 5;

f(...);

b := a + 10;

global a;

global b;

f(p) {

*p := 0;

}

g() {

a := 5;

f(&a);

b := a + 10;

}

h() {

a := 5;

f(&b);

b := a + 10;

}

Another approach: summaries

• Compute summary info for each procedure

• Callee summary: summarizes effect/results of

callee procedures for callers

– used to implement the flow function for a call node

• Caller summaries: summarizes context of all

callers for callee procedure

– used to start analysis of a procedure

5

Examples of summaries Issues with summaries

• Level of “context” sensitivity:

– For example, one summary that summarizes the

entire procedure for all call sites

– Or, one summary for each call site (getting close to

the precision of inlining)

– Or ...

• Various levels of captured information

– as small as a single bit

– as large as the whole source code for callee/callers

• How does separate compilation work?

How to compute summaries

• Using iterative analysis

• Keep the current solution in a map from procs to
summaries

• Keep a worklist of procedures to process

• Pick a proc from the worklist, compute its
summary using intraprocedural analysis and the
current summaries for all other nodes

• If summary has changed, add callers/callees to
the worklist for callee/caller summaries

How to compute callee summaries

let m: map from proc to computed summary

let worklist: work list of procs

for each proc p in call graph do

m(p) := ?

for each proc p do

worklist.add(p)

while (worklist.empty.not) do

let p := worklist.remove_any;

// compute summary using intraproc analysis

// and current summaries m

let summary := compute_summary(p,m);

if (m(p)  summary)

m(p) := summary;

for each caller c of p

worklist.add(c)

Examples

• Let’s see how this works on some examples

• We’ll use an analysis for program verification as

a running example

Protocol checking

Interface usage rules in

documentation

– Order of operations, data access

– Resource management

– Incomplete, wordy, not checked

Violated rules) crashes

– Failed runtime checks

– Unreliable software

6

FSM protocols

• These protocols can often be expressed as

FSMs

• For example: lock protocol

Unlocked Locked

lock

unlock

Error

unlock lock

*

FSM protocols

• Alphabet of FSM are actions that affect the state

of the FSM

• Often leave error state implicit

• These FSMs can get pretty big for realistic

kernel protocols

• For lock example:

– At run-time: one FSM per lock

– At analysis-time: one FSM per static approximation of

run-time locks

FSM protocol checking

• Goal: make sure that FSM does not enter error

state

• Lattice:

FSM protocol checking

• Goal: make sure that FSM does not enter error

state

• Lattice:

Lock protocol example

g() {

lock;

}

h() {

unlock;

}

f() {

h();

if (...) {

main();

}

}

main() {

g();

f();

lock;

unlock;

}

Lock protocol example

g() { lock; }

h() { unlock; }

f() {

h();

if (...) { main(); }

}

main() {

g();

f();

lock;

unlock;

}

main f g h

7

Lock protocol example

g() { lock; }

h() { unlock; }

f() {

h();

if (...) { main(); }

}

main() {

g();

f();

lock;

unlock;

}

main f g h

; ; ; ; ; ;;u

u” ” ” ” ” ” ”

l” ” ” ” ” ”

l” ” ” ” ”” ”
”

” ” ” ”” ””

” ” ” ”” ””

l

” ” ” ”” ””

” ” ” ”” ””

” ” ” ”” ””

u

u

u

u

Another lock protocol example

g() {

if(isLocked()) {

unlock;

}

else {

lock;

}

}

f() {

g();

if (...) {

main();

}

}

main() {

g();

f();

lock;

unlock;

}

Another lock protocol example

g() {

if(isLocked()) {

unlock;

} else { lock; }

}

main f g

; ; ; ;;u

” ” ” ” ”

” ” ” ” ”

” ” ” ” ”

u

l

l

f() {

g();

if (...) { main(); }

}

main() {

g();

f();

lock;

unlock;

}

Another lock protocol example

g() {

if(isLocked()) {

unlock;

} else { lock; }

}

main f g

; ; ; ;;u

” ” ” ” ”

” ” ” ” ”

” ” ” ” ”

” ” ” ” ”

u

l

l

” ” ” ” ”

” ” ” ”

{u,l}

f() {

g();

if (...) { main(); }

}

main() {

g();

f();

lock;

unlock;

}

{u,l}

” ” ” ”

{u,l} {u,l}

{u,l} {u,e}

What went wrong? What went wrong?

• We merged info from two call sites of g()

• Solution: summaries that keep different contexts

separate

• What is a context?

8

Approach #1 to context-sensitivity

• Keep information for different call sites separate

• In this case: context is the call site from which

the procedure is called

Example again

g() {

if(isLocked()) {

unlock;

} else { lock; }

}

f() {

g();

if (...) { main(); }

}

main() {

g();

f();

lock;

unlock;

}

main f g

Example again

g() {

if(isLocked()) {

unlock;

} else { lock; }

}

main f g

f() {

g();

if (...) { main(); }

}

main() {

g();

f();

lock;

unlock;

}

How should we change the example?

• How should we change our example to break

our context sensitivity strategy?

g() {

if(isLocked()) {

unlock;

}

else {

lock;

}

}

f() {

g();

if (...) {

main();

}

}

main() {

g();

f();

lock;

unlock;

}

Answer

h() { g() }

g() {

if(isLocked()) {

unlock;

}

else {

lock;

}

}

f() {

h();

if (...) {

main();

}

}

main() {

h();

f();

lock;

unlock;

}

In general

• Our first attempt was to make the context be the

immediate call site

• Previous example shows that we may need 2

levels of the stack

– the context for an analysis of function f is: call site L1

where f was called from AND call site L2 where f’s

caller was called from

• Can generalize to k levels

– k-length call strings approach of Sharir and Pnueli

– Shiver’s k-CFA

9

Approach #2 to context-sensitivity Approach #2 to context-sensitivity

• Use dataflow information at call site as the

context, not the call site itself

Using dataflow info as context

g() {

if(isLocked()) {

unlock;

} else { lock; }

}

main f g

f() {

g();

if (...) { main(); }

}

main() {

g();

f();

lock;

unlock;

}

Transfer functions

• Our pairs of summaries look like functions from

input information to output information

• We call these transfer functions

• Complete transfer functions

– contain entries for all possible incoming dataflow

information

• Partial transfer functions

– contain only some entries, and continually refine

during analysis

Top-down vs. bottom-up

• We’ve always run our interproc analysis top

down: from main, down into procs

• For data-based context sensitivity, can also run

the analysis bottom-up

– analyze a proc in all possibly contexts

– if domain is distributive, only need to analyze

singleton sets

Bottom-up example

g() {

if(isLocked()) {

unlock;

} else { lock; }

}

f() {

g();

if (...) { main(); }

}

main() {

g();

f();

lock;

unlock;

}
main f g

? ? ?
u ! l

l ! u

u ! l

l ! u

u ! u

l ! e

””

”

”

”

”

u ! {l,e}

l ! u
””

u ! u

l ! e

10

Top-down vs. bottom-up

• What are the tradeoffs?

Top-down vs. bottom-up

• What are the tradeoffs?
– In top-down, only analyze procs in the context that

occur during analysis, whereas in bottom-up, may do
useless work analyzing proc in a data context never
used during analysis

– However, top-down requires analyzing a given
function at several points in time that are far away
from each other. If the entire program can’t fit in RAM,
this will lead to unnecessary swapping. On the other
hand, can do bottom-up as one pass over the call-
graph, one SCC at a time. Once a proc is analyzed, it
never needs to be reloaded in memory.

– top-down better suited for infinite domains

In class exercise

main() {

L1: f()

}

f() {

if(Unlocked()) {

lock;

L2: f();

} else {

unlock;

}

}

main f

In class exercise

main() {

L1: f()

}

f() {

if(Unlocked()) {

lock;

L2: f();

} else {

unlock;

}

}

main f

; ;;u

In class exercise

main() {

L1: f()

}

f() {

if(Unlocked()) {

lock;

L2: f();

} else {

unlock;

}

}

” ” ”u

”u,l” ”

uu,l” ”

uu,l” u

main f

; ;;u

Reps Horwitz and Sagiv 95 (RHS)

• Another approach to context-sensitive

interprocedural analysis

• Express the problem as a graph reachability

query

• Works for distributive problems

11

Reps Horwitz and Sagiv 95 (RHS)

g() {

if(isLocked()) {

unlock;

} else {

lock;

}

}

f() {

g();

if (...) {

main();

}

}

main() {

g();

f();

lock;

unlock;

}

Reps Horwitz and Sagiv 95 (RHS)

g() {

if(isLocked()) {

unlock;

} else {

lock;

}

}

f() {

g();

if (...) {

main();

}

}

main() {

g();

f();

lock;

unlock;

}

Reps Horwitz and Sagiv 95 (RHS)

g() {

if(isLocked()) {

unlock;

} else {

lock;

}

}

f() {

g();

if (...) {

main();

}

}

main() {

g();

f();

lock;

unlock;

}

Procedure specialization

• Interprocedural analysis is great for callers

• But for the callee, information is still merged

main() {

x := new A(...);

y := x.g();

y.f();

x := new A(...);

y := x.g();

y.f();

x := new B(...);

y:= x.g();

y.f();

}

// g too large to inline

g(x) {

x.f();

// lots of code

return x;

}

// but want to inline f

f(x@A) { ... }

f(x@B) { ... }

Procedure specialization

• Specialize g for each dataflow information

• “In between” inlining and context-sensitve interproc

main() {

x := new A(...);

y := x.g1();

y.f();

x := new A(...);

y := x.g1();

y.f();

x := new B(...);

y:= x.g2();

y.f();

}

g1(x) {

x.f(); // can now inline

// lots of code

return x;

}

g2(x) {

x.f(); // can now inline

// lots of code

return x;

}

// but want to inline f

f(x@A) { ... }

f(x@B) { ... }

A() {

call D

}

B() {

call D

}

C() {

call D

}

D() {

...

}

Recap using pictures

12

A() {

}

D’

B() {

}

D’’

C() {

}

D’’’

Inlining

A() {

call D

}

B() {

call D

}

C() {

call D

}

D() {

...

}

A() {

call D

}

B() {

call D

}

C() {

call D

}

D() {

...

}

caller summary

callee summary

Context-insensitive summary

A() {

call D

}

B() {

call D

}

C() {

call D

}

D() {

...

}

A() {

call D

}

B() {

call D

}

C() {

call D

}

D() {

...

}

context sensitive

summary

Context sensitive summary

A() {

call D

}

B() {

call D

}

C() {

call D

}

D() {

...

}

A() {

call D

}

B() {

call D

}

C() {

call D

}

D() {

...

}

D’() {

...

}

Procedure Specialization

A() {

call D

}

B() {

call D

}

C() {

call D

}

D() {

...

}

Comparison

Caller precision Callee precision Code bloat

Inlining

context-insensitive

interproc

Context sensitive

interproc

Specialization

Comparison

Caller precision Callee precision code bloat

Inlining ☺, because

contexts are

kept separate

☺, because contexts

are kept separate

 may be large

if we want to

get the best

precision

context-insensitive

interproc
, because

contexts are

merged

, because contexts

are merged

☺ none

Context sensitive

interproc
☺, because of

context

sensitive

summaries

, because contexts

are still merged

when optimizing

callees

☺ none

Specialization ☺, contexts are

kept separate

☺, contexts are kept

separate

 Some, less

than inlining

13

Summary on how to optimize function calls

• Inlining

• Tail call optimizations

• Interprocedural analysis using summaries

– context sensitive

– context insensitive

• Specialization

Cutting edge research

• Making interprocedural analysis scalable

• Optimizing first order function calls

• Making inlining effective in the presence of

dynamic dispatching and class loading

