
1

Pointer analysis

Pointer Analysis

• Outline:

– What is pointer analysis

– Intraprocedural pointer analysis

– Interprocedural pointer analysis

• Andersen and Steensgaard

Pointer and Alias Analysis

• Aliases: two expressions that denote the same

memory location.

• Aliases are introduced by:

– pointers

– call-by-reference

– array indexing

– C unions

Useful for what?

• Improve the precision of analyses that require knowing

what is modified or referenced (eg const prop, CSE …)

• Eliminate redundant loads/stores and dead stores.

• Parallelization of code

– can recursive calls to quick_sort be run in parallel? Yes,

provided that they reference distinct regions of the array.

• Identify objects to be tracked in error detection tools

x := *p;

...

y := *p; // replace with y := x?

*x := ...;

// is *x dead?

x.lock();

...

y.unlock(); // same object as x?

Kinds of alias information

• Points-to information (must or may versions)
– at program point, compute a set of pairs of the form p ! x, where

p points to x.

– can represent this information

in a points-to graph

• Alias pairs
– at each program point, compute the set of of all pairs (e1,e2)

where e1 and e2 must/may reference the same memory.

• Storage shape analysis
– at each program point, compute an

abstract description of the pointer structure.

p
x

y

z

p

Intraprocedural Points-to Analysis

• Want to compute may-points-to information

• Lattice:

2

Flow functions

x := a + b

in

out

Fx := a+b(in) =

x := k

in

out

Fx := k(in) =

Flow functions

x := &y

in

out

Fx := &y(in) =

x := y

in

out

Fx := y(in) =

Flow functions

*x := y

in

out

F*x := y(in) =

x := *y

in

out

Fx := *y(in) =

Intraprocedural Points-to Analysis

• Flow functions:

Pointers to dynamically-allocated memory

• Handle statements of the form: x := new T

• One idea: generate a new variable each time the

new statement is analyzed to stand for the new

location:

Example

l := new Cons

p := l

t := new Cons

*p := t

p := t

3

Example solved

l := new Cons

p := l

t := new Cons

*p := t

p := t

l

p
V1

l

p
V1 t V2

l

p
V1

t

V2

l

t

V1

p

V2

l

t

V1

p

V2

l

t

V1

p

V2 V3

l

t

V1

p

V2 V3

l

t

V1

p

V2 V3

What went wrong?

• Lattice infinitely tall!

• We were essentially running the program

• Instead, we need to summarize the infinitely

many allocated objects in a finite way

• New Idea: introduce summary nodes, which will

stand for a whole class of allocated objects.

What went wrong?

• Example: For each new statement with label L,

introduce a summary node locL , which stands

for the memory allocated by statement L.

• Summary nodes can use other criterion for

merging.

Example revisited

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t

Example revisited & solved

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t

l

p
S1

l

p
S1 t S2

l

p
S1

t

S2

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

Iter 1 Iter 2 Iter 3

Array aliasing, and pointers to arrays

• Array indexing can cause aliasing:

– a[i] aliases b[j] if:

• a aliases b and i = j

• a and b overlap, and i = j + k, where k is the amount of

overlap.

• Can have pointers to elements of an array

– p := &a[i]; ...; p++;

• How can arrays be modeled?

– Could treat the whole array as one location.

– Could try to reason about the array index

expressions: array dependence analysis.

4

Fields

• Can summarize fields using per field summary

– for each field F, keep a points-to node called F that

summarizes all possible values that can ever be

stored in F

• Can also use allocation sites

– for each field F, and each allocation site S, keep a

points-to node called (F, S) that summarizes all

possible values that can ever be stored in the field F

of objects allocated at site S.

Summary

• We just saw:

– intraprocedural points-to analysis

– handling dynamically allocated memory

– handling pointers to arrays

• But, intraprocedural pointer analysis is not enough.

– Sharing data structures across multiple procedures is one the

big benefits of pointers: instead of passing the whole data

structures around, just pass pointers to them (eg C pass by

reference).

– So pointers end up pointing to structures shared across

procedures.

– If you don’t do an interproc analysis, you’ll have to make

conservative assumptions functions entries and function calls.

Conservative approximation on entry

• Say we don’t have interprocedural pointer

analysis.

• What should the information be at the input of

the following procedure:

global g;

void p(x,y) {

...

}

x y g

Conservative approximation on entry

• Here are a few solutions:

x y g

locations

from alloc

sites prior

to this

invocation

global g;

void p(x,y) {

...

}

• They are all very conservative!

• We can try to do better.

x,y,g &

locations

from alloc

sites prior

to this

invocation

Interprocedural pointer analysis

• Main difficulty in performing interprocedural

pointer analysis is scaling

• One can use a top-down summary based

approach (Wilson & Lam 95), but even these are

hard to scale

• Cost:
– space: store one fact at each prog point

– time: iterationS1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t

l

p
S1

l

p
S1 t S2

l

p
S1

t

S2

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

Iter 1 Iter 2 Iter 3

Example revisited

5

New idea: store one dataflow fact

• Store one dataflow fact for the whole program

• Each statement updates this one dataflow fact

– use the previous flow functions, but now they take the

whole program dataflow fact, and return an updated

version of it.

• Process each statement once, ignoring the order

of the statements

• This is called a flow-insensitive analysis.

Flow insensitive pointer analysis

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t

Flow insensitive pointer analysis

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t

l

p
S1

l

p
S1 t S2

l

p
S1

t

S2

l

t

S1

p

S2

Flow sensitive vs. insensitive

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

Flow-sensitive Soln Flow-insensitive Soln

l

t

S1

p

S2

What went wrong?

• What happened to the link between p and S1?

– Can’t do strong updates anymore!

– Need to remove all the kill sets from the flow

functions.

• What happened to the self loop on S2?

– We still have to iterate!

Flow insensitive pointer analysis: fixed

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t

l

p
S1

l

p
S1 t S2

l

p
S1

t

S2

6

Flow insensitive pointer analysis: fixed

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t

l

p
S1

l

p
S1 t S2

l

p
S1

t

S2

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

L2

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

l

t

L1

p

L2

l

t

S1

p

S2

Iter 1 Iter 2 Iter 3

l

t

S1

p

S2

Final result

This is Andersen’s

algorithm ’94

Flow sensitive vs. insensitive, again

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

Flow-sensitive Soln Flow-insensitive Soln

l

t

S1

p

S2

Flow insensitive loss of precision

• Flow insensitive analysis leads to loss of

precision!

main() {

x := &y;

...

x := &z;

}

Flow insensitive analysis tells us that x

may point to z here!

• However:

– uses less memory (memory can be a big bottleneck

to running on large programs)

– runs faster

In Class Exercise!

S1: p := new Cons

*p = q

S2: q := new Cons

r = &q

*q = r

s = ps = r

*r = s

*q = p

In Class Exercise! solved

S1: p := new Cons

*p = q

S2: q := new Cons

r = &q

*q = r

s = ps = r

*r = s

*q = p

p S1

S2q

r s

Worst case complexity of Andersen

*x = y
x

a b c

y

d e f

x

a b c

y

d e f

Worst case: N2 per
statement, so at least N3

for the whole program.
Andersen is in

fact O(N3)

7

New idea: one successor per node

• Make each node have only one successor.

• This is an invariant that we want to maintain.

x

a,b,c

y

d,e,f

*x = y
x

a,b,c

y

d,e,f

x

*x = y

y

More general case for *x = y

x

*x = y

y x y x y

More general case for *x = y

x

x = *y

y

Handling: x = *y

x

x = *y

y x y x y

Handling: x = *y

x

x = y

y

x = &y

x y

Handling: x = y (what about y = x?)

Handling: x = &y

8

x

x = y

y x y x y

x = &y

x y x

y,…

x y

Handling: x = y (what about y = x?)

Handling: x = &y

get the same

for y = x

Our favorite example, once more!

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t

1

2

3

4

5

Our favorite example, once more!

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t

l

S1

t

S2

p

l

S1

l

S1

p

l

S1

t

S2

p

l

S1,S2

tp

1

2

3

4

5

1 2

3

l

S1

t

S2

p

4

5

Flow insensitive loss of precision

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

l

t

S1

p

S2

Flow-sensitive

Subset-based

Flow-insensitive

Subset-based

l

t

S1

p

S2

l

S1,S2

tp

Flow-insensitive

Unification-

based

bar() {

i := &a;

j := &b;

foo(&i);

foo(&j);

// i pnts to what?

*i := ...;

}

void foo(int* p) {

printf(“%d”,*p);
}

1
2
3
4

Another example

bar() {

i := &a;

j := &b;

foo(&i);

foo(&j);

// i pnts to what?

*i := ...;

}

void foo(int* p) {

printf(“%d”,*p);
}

i

a

j

b

p

i

a

i

a

j

b

i

a

j

b

p

i,j

a,b

p

1
2
3
4

1 2

Another example

4

3

9

Almost linear time

• Time complexity: O(Nα(N, N))

• So slow-growing, it is basically linear in practice

• For the curious: node merging implemented

using UNION-FIND structure, which allows set

union with amortized cost of O(α(N, N)) per op.

Take CSE 202 to learn more!

inverse Ackermann

function

In Class Exercise!

S1: p := new Cons

*p = q

S2: q := new Cons

r = &q

*q = r

s = ps = r

*r = s

*q = p

In Class Exercise! solved

S1: p := new Cons

*p = q

S2: q := new Cons

r = &q

*q = r

s = ps = r

*r = s

*q = p

p

q,S1,s2

r s

p S1

S2q

r s

Steensgaard

Andersen

Advanced Pointer Analysis

• Combine flow-sensitive/flow-insensitive

• Clever data-structure design

• Context-sensitivity

