Pointer analysis

Pointer Analysis

+ Outline:
— What is pointer analysis
— Intraprocedural pointer analysis
— Interprocedural pointer analysis
« Andersen and Steensgaard

Pointer and Alias Analysis

Useful for what?

« Aliases: two expressions that denote the same
memory location.

« Aliases are introduced by:
— pointers
— call-by-reference
— array indexing
— C unions

« Improve the precision of analyses that require knowing
what is modified or referenced (eg const prop, CSE ...)
+ Eliminate redundant loads/stores and dead stores.
x 1= *p; *x o= L.

// is *x dead?
y := *p; // replace with y := x?

« Parallelization of code

— can recursive calls to quick_sort be run in parallel? Yes,
provided that they reference distinct regions of the array.

« ldentify objects to be tracked in error detection tools
x.lock () ;

y.unlock(); // same object as x?

Kinds of alias information

» Points-to information (must or may versions)
— at program point, compute a set of pairs of the form p ! x, where
p points to x.
— can represent this information
in a points-to graph

« Alias pairs
— at each program point, compute the set of of all pairs (e;,e,)
where e; and e, must/may reference the same memory.

+ Storage shape analysis E@X

— at each program point, compute an
abstract description of the pointer structure.

Intraprocedural Points-to Analysis

* Want to compute may-points-to information

[\K*’\/’ rela v e wa?l

* Lattice: D= 7

o (XY [xe Ve Ve V%}

Flow functions

Fx = k(in) =

l in X
o

out

Flow functions

Fuesi) =
[out
in .
ey Feea(n=
[out

Flow functions

Intraprocedural Points-to Analysis

* Flow functions:

x = vy Fxmy(in) =
kill(z) = Uyevars{(x,v)}
l " Fp=p(S) = S — kill(z)
Fp—oi6(S) = S —kill(z)
Fr=y(S) = S —kill(z) U{(z,v) | (y,0) € S}
l in Fp—gy(S) = S—kill(z) U{(z,y)}
. _ F*x = y(iﬂ) = Fr=sy(S) = S —kill(z) U{(z,v)|3t € Vars.[(y,t) € S A (t,v) € S]}
Tou Fuz:=y(S) = let V:={v|(z,v) € S} in
o S — (if V = {v} then kill(v) else 0)
U{(v,t) [v €V A(y,t) € S}
Pointers to dynamically-allocated memory Example

« Handle statements of the form: x := new T

» One idea: generate a new variable each time the
new statement is analyzed to stand for the new
location:

Fp—pew T7(S) = S — kill(z) U {(z, newvar())}

1 := new Cons

t := new Cons

Example solved

1 := new Cons

t

What went wrong?

« Lattice infinitely tall!
* We were essentially running the program

* Instead, we need to summarize the infinitely
many allocated objects in a finite way

* New Idea: introduce summary nodes, which will
stand for a whole class of allocated objects.

What went wrong?

« Example: For each new statement with label L,
introduce a summary node loc, , which stands
for the memory allocated by statement L.

Fr: gi=new 7(S) = S —kill(z) U {(z,loc)}

* Summary nodes can use other criterion for
merging.

Example revisited

S1l: 1 := new Cons

Example revisited & solved

Iter 1 Iter 2 Iter 3
(pl

53] "f e

s1 1 s1

[1}-fs1}-ls2])
l |

s1][t P{s2] | [1]}-fs1]}-[s2] [1 }~{s1}~{s2hy
I I
(el (el (e}
[s2] [1 }~{s1}~{s2ly

Array aliasing, and pointers to arrays

» Array indexing can cause aliasing:
- a[i] aliasesb[j] if:
« aaliasesbandi=j
« aand b overlap, and i =j + k, where k is the amount of
overlap.
» Can have pointers to elements of an array
-p := &a[i]; ...; pt+;

» How can arrays be modeled?
— Could treat the whole array as one location.

— Could try to reason about the array index
expressions: array dependence analysis.

Fields

» Can summarize fields using per field summary
— for each field F, keep a points-to node called F that
summarizes all possible values that can ever be
stored in F

« Can also use allocation sites
— for each field F, and each allocation site S, keep a
points-to node called (F, S) that summarizes all
possible values that can ever be stored in the field F
of objects allocated at site S.

Summary

* We just saw:
— intraprocedural points-to analysis
— handling dynamically allocated memory
— handling pointers to arrays

« But, intraprocedural pointer analysis is not enough.

— Sharing data structures across multiple procedures is one the
big benefits of pointers: instead of passing the whole data
structures around, just pass pointers to them (eg C pass by
reference).

— So pointers end up pointing to structures shared across
procedures.

— If you don’t do an interproc analysis, you'll have to make
conservative assumptions functions entries and function calls.

Conservative approximation on entry

» Say we don’ t have interprocedural pointer
analysis.

* What should the information be at the input of
the following procedure:

global g; & [[q]

void p(x,y) {

Conservative approximation on entry

* Here are a few solutions:

global g;
void p(x,y) {

x/¥,9 &
location
locations from alloc

from alloc sites prior
' sites prior to this
to this

invocation

* They are all very conservative!

* We can try to do better.

Interprocedural pointer analysis

» Main difficulty in performing interprocedural
pointer analysis is scaling

* One can use a top-down summary based
approach (Wilson & Lam 95), but even these are
hard to scale

Example revisited

* Cost:
— space: store one fact at each prog point

— time: iteration
Iter 1 Iter 2 Iter 3
(p]
51 r“f T
s1 1]{s1
{s2] D
I I
(s1][& }{s2] {s2] {szhy
I |
{s2] E‘ {szhy
(e] (e] (e}
{s2] (s2h {s2]

New idea: store one dataflow fact

 Store one dataflow fact for the whole program

» Each statement updates this one dataflow fact

— use the previous flow functions, but now they take the
whole program dataflow fact, and return an updated
version of it.

» Process each statement once, ignoring the order
of the statements

* This is called a flow-insensitive analysis.

Flow insensitive pointer analysis

S1l: 1 := new Cons

Flow insensitive pointer analysis

S1l: 1 := new Cons

Flow sensitive vs. insensitive

S1l: 1 := new Cons

Flow-sensitive Soln Flow-insensitive Soln

What went wrong?

* What happened to the link between p and S1?
— Can’t do strong updates anymore!
— Need to remove all the kill sets from the flow
functions.
* What happened to the self loop on S2?
— We still have to iterate!

Flow insensitive pointer analysis: fixed

S1l: 1 := new Cons

Flow insensitive pointer analysis: fixed

This is Andersen’s
algorithm ’ 94 Final result

:= new Cons
Iter 1 Iter 2 Iter 3
p t
3 2h
Z N [s2]
B 2
S2: t := new Cons|
(el R
1
e 08 *
(p} (p]
S ‘*
(e}))
{
(e} (e R
e e ‘*

Flow sensitive vs. insensitive, again

S1l: 1 := new Cons

Flow-sensitive Soln Flow-insensitive Soln

ek At]
1—+s1
-4,

Flow insensitive loss of precision

» Flow insensitive analysis leads to loss of

precision!
main() {
X = &y;
Flow insensitive analysis tells us that x
may point to z here!
x = &z
}
* However:

— uses less memory (memory can be a big bottleneck
to running on large programs)

— runs faster

In Class Exercise!

Sl: p := new Cons
S2: q := new Cons

In Class Exercise! solved

S1l: p := new Cons
S2: q := new Cons

Worst case complexity of Andersen

Worst case: N2 per
statement, so at least N3
for the whole program.
Andersenis in

fact O(N3)

New idea: one successor per node

More general case for *x

y

» Make each node have only one successor.

* This is an invariant that we want to maintain.

[%] I:::I = I!I
o] [aes] = [amef—fae]

More general case for *x = y

Handling: x = *y

x = *y

Handling: x = *y

Handling: x = y (what about y = x?)

Handling: x = y (what about y = x?)

T
;

get the same
fory =x

<

v

Handling: x = &y

%

Our favorite example, once more!

S1l: 1 := new Cons @

Our favorite example, once more!

D e @R
—

®
nn
Whed

4®/

Flow insensitive loss of precision

Subset-based | Subset-based based

S1: 1 := new Cons - . . Flow-insensitive
Flow-sensitive | Flow-insensitive | jnification-

Another example

bar

O {

i = sa;
j := &b;
foo (&i) ;

foo (&3) ;

// i pnts to what?
*io= oL

@
@
@
@

void foo(int* p) {
printf (“sd”, *p) ;
}

Another example

bar

&a; @
sb; =
0o (&1) ;

foo (&3) ;

// i pnts to what?
*io= oL

:
: [=]

@
@
©)
@

void foo(int* p) {
printf (“%d”, *p) ;

Almost linear time

» Time complexity: O(Na(N, N))

inverse Ackermann
function

» So slow-growing, it is basically linear in practice

* For the curious: node merging implemented
using UNION-FIND structure, which allows set
union with amortized cost of O(a(N, N)) per op.
Take CSE 202 to learn more!

In Class Exercise!

Sl: p := new Cons
S2: q := new Cons

In Class Exercise! solved

Sl: p := new Cons

S
e [zl s

Advanced Pointer Analysis

Andersen

» Combine flow-sensitive/flow-insensitive

» Clever data-structure design

» Context-sensitivity

