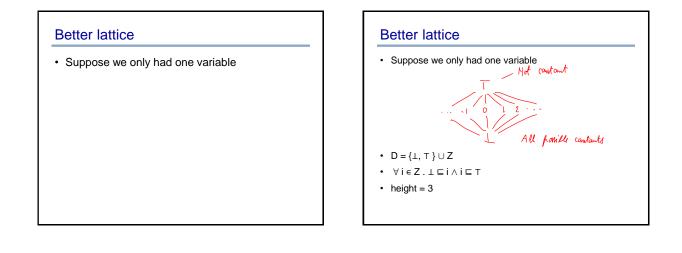


Back to lattice

- $(D, \sqsubseteq, \bot, \top, \sqcup, \sqcap) =$ $(2^A, \supseteq, A, \emptyset, \cap, \cup)$ where A = { x \rightarrow N | x \in Vars \land N \in Z }
- · What's the problem with this lattice?

Back to lattice

- $(D, \sqsubseteq, \bot, T, \sqcup, \Pi) =$ $(2^A, \supseteq, A, \emptyset, \cap, \cup)$ where A = { x \rightarrow N | x \in Vars \land N \in Z }
- · What's the problem with this lattice?
- Lattice is infinitely high, which means we can't guarantee termination



For all variables

- Two possibilities
- Option 1: Tuple of lattices
- Given lattices $(D_1, \sqsubseteq_1, \bot_1, \top_1, \sqcup_1, \sqcap_1) \dots (D_n, \sqsubseteq_n, \bot_n, \top_n, \sqcup_n, \sqcap_n)$ create:

tuple lattice Dⁿ =

For all variables

- Two possibilities
- Option 1: Tuple of lattices
- Given lattices $(D_1, \sqsubseteq_1, \bot_1, \top_1, \sqcup_1, \sqcap_1) \dots (D_n, \sqsubseteq_n, \bot_n, \top_n, \sqcup_n, \sqcap_n)$ create:

```
 \begin{array}{l} \mbox{tuple lattice } D^n = ((D_1 \times ... \times D_n), \sqsubseteq, \bot, \top, \Box, \Box) \mbox{ where } \\ \bot = (\bot_1, ..., \bot_n) \\ \top = (\top_1, ..., \top_n) \\ (a_1, ..., a_n) \cup (b_1, ..., b_n) = (a_1 \sqcup_1 b_1, ..., a_n \sqcup_n b_n) \\ (a_1, ..., a_n) \sqcap (b_1, ..., b_n) = (a_1 \sqcap_1 b_1, ..., a_n \sqcup_n b_n) \\ height = height(D_1) + ... + height(D_n) \end{array}
```

For all variables

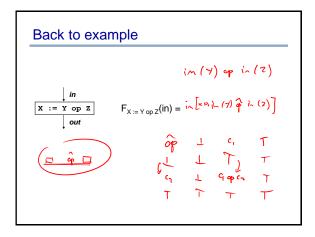
- · Option 2: Map from variables to single lattice
- Given lattice (D, $\sqsubseteq_1, \perp_1, \top_1, \sqcup_1, \sqcap_1)$ and a set V, create:

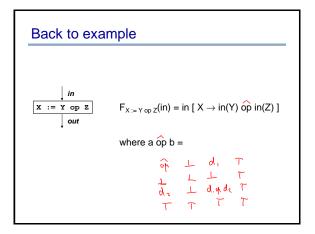
map lattice V \rightarrow D = (V \rightarrow D, $\sqsubseteq,$ $\bot,$ $\top,$ $\sqcup,$ $\sqcap)$

For all variables

- Option 2: Map from variables to single lattice
- Given lattice (D, \sqsubseteq_1 , \bot_1 , \top_1 , \sqcup_1 , \sqcap_1) and a set V, create:

map lattice $\forall \rightarrow D = (\forall \rightarrow D, \sqsubseteq, \bot, \top, \sqcup, \sqcap)$ $\begin{array}{c} \bot = \lambda \lor . \bot, \\ \top = \lambda \lor . \uparrow, \\ \alpha \sqcup \flat = \lambda \lor . (\alpha(\lor) \sqcup, \flat(\lor)) \\ \alpha \sqcap \flat = \lambda \lor . (\alpha(\lor) \sqcap, \flat(\lor)) \\ \alpha \sqsubseteq \flat \iff \forall \lor . \alpha(\lor) \sqsubseteq, \flat(\lor) \end{array}$





General approach to domain design

- · Simple lattices:
 - boolean logic lattice
 - powerset lattice
 - incomparable set: set of incomparable values, plus top and bottom (eg const prop lattice)
 - two point lattice: just top and bottom
- Use combinators to create more complicated lattices
 - tuple lattice constructor
 - map lattice constructor

May vs Must

- · Has to do with definition of computed info
- Set of $x \rightarrow y$ must-point-to pairs
 - if we compute $x \rightarrow y$, then, then during program execution, x must point to y
- Set of $x \rightarrow y$ may-point-to pairs
 - if during program execution, it is possible for x to point to y, then we must compute $x \to y$

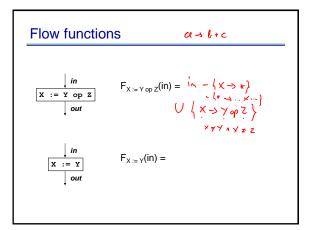
	May	Must
most optimistic (bottom)	Ý	FS
most conservative (top)	FS	Ø
safe	add	Sorable
merge	U	Λ

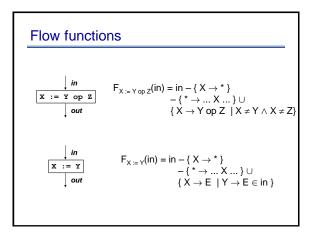
	May	Must
most optimistic (bottom)	empty set	full set
most conservative (top)	full set	empty set
safe	overly big	overly small
merge	U	Ω

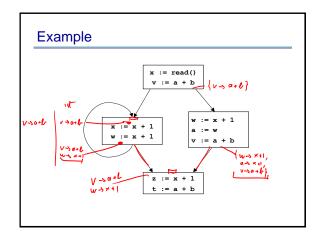
Common Sub-expression Elim

- Want to compute when an expression is available in a var
- Domain:

Common Sub-expression Elim Want to compute when an expression is available in a var Domain:

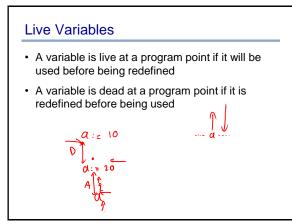






Direction of analysis

- Although constraints are not directional, flow functions are
- All flow functions we have seen so far are in the forward direction
- In some cases, the constraints are of the form $\label{eq:interm} \mbox{in} = F(\mbox{out})$
- These are called backward problems.
- Example: live variables - compute the set of variables that may be live



Example: live variables

- Set $D = \mathcal{G}(V_{ay})$
- Lattice: $(D, \sqsubseteq, \bot, \top, \sqcup, \sqcap) =$

Example: live variables

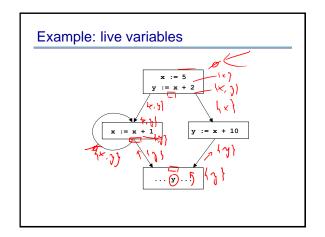
Example: live variables

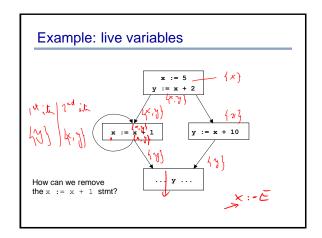
- Set D = 2 ^{Vars}
- Lattice: (D, \sqsubseteq , \bot , \top , \sqcup , \sqcap) = (2^{Vars}, \subseteq , \emptyset , Vars, \cup , \cap)

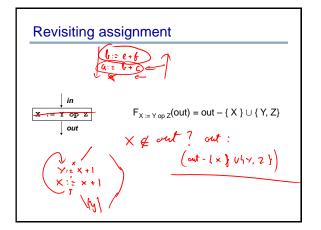
 $F_{X := Y \text{ op } Z}(\text{out}) = \text{out} \cdot \{\times\}$ $\bigcup \{\forall, Z\}$

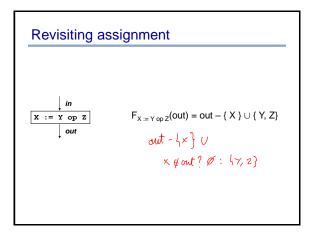
$\mathsf{F}_{X\,:=\,Y\,op\,Z}(out)=out-\{\,X\,\}\cup\{\,Y,\,Z\}$

U,



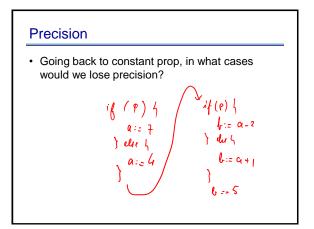


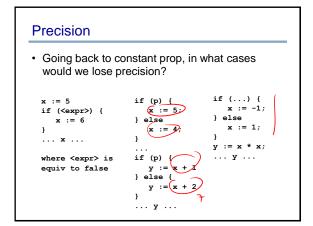




Theory of backward analyses

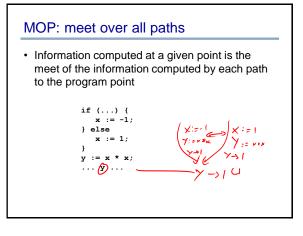
- · Can formalize backward analyses in two ways
- Option 1: reverse flow graph, and then run forward problem
- Option 2: re-develop the theory, but in the backward direction





Precision

- · The first problem: Unreachable code
 - solution: run unreachable code removal before
 - the unreachable code removal analysis will do its best, but may not remove all unreachable code
- The other two problems are path-sensitivity issues
- Branch correlations: some paths are infeasible
- Path merging: can lead to loss of precision

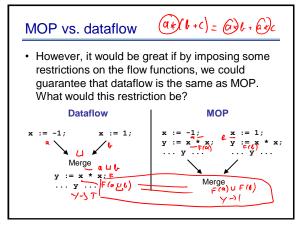


MOP

- For a path p, which is a sequence of statements $[s_1, ..., s_n]$, define: $F_p(in) = F_{s_n}(...F_{s_1}(in) ...)$
- In other words: $F_p = F_{s_1} \circ \cdots \circ F_{s_n}$
- Given an edge e, let paths-to(e) be the (possibly infinite) set of paths that lead to e
- Given an edge e, MOP(e) = $F_{p}(\bot)$
- For us, should be called JOP (ie: join, not meet)

MOP vs. dataflow

- MOP is the "best" possible answer, given a fixed set of flow functions
 - This means that $MOP \sqsubseteq$ dataflow at edge in the CFG
- In general, MOP is not computable (because there can be infinitely many paths)
 - vs dataflow which is generally computable (if flow fns are monotonic and height of lattice is finite)
- And we saw in our example, in general, MOP ≠ dataflow



MOP vs. dataflow

- However, it would be great if by imposing some restrictions on the flow functions, we could guarantee that dataflow is the same as MOP. What would this restriction be?
- Distributive problems. A problem is distributive if:

 $\forall a, b . F(a \sqcup b) = F(a) \sqcup F(b)$

 If flow function is distributive, then MOP = dataflow

Summary of precision

- · Dataflow is the basic algorithm
- To basic dataflow, we can add path-separation

 Get MOP, which is same as dataflow for distributive
 problems
 - Variety of research efforts to get closer to MOP for non-distributive problems
- To basic dataflow, we can add path-pruning - Get branch correlation
- To basic dataflow, can add both: - meet over all feasible paths