Background material

Relations

* ArelationoverasetSisasetRCSx S
— We write aR b for (a,b) e R

* Arelation R is:

— reflexive iff
VaeS.aRa

— transitive iff
VaeS,beS,ceS.aRbAbRc=aRc

— symmetric iff
Va,beS.aRb=bRa

— anti-symmetric iff
Va,b,eS.aRb=-(bRa)
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Partial orders

* Arelation overasetSisasetRCS xS
— Wewrite aR b for (a,b) € R

* Arelation R is:

— reflexive iff
VaeS.aRa

— transitive iff
VaeS,beS,ceS.aRbAbRc=aRc

— symmetric iff
Va,beS.aRb=bRa

— anti-symmetric iff
Mab-eS-aRb==0bRa)
Va,b,eS.aRbAbRa=a=b

» An equivalence class is a relation that is:

+ A partial order is a relation that is:

Partial orders

Lub and glb

» An equivalence class is a relation that is:
— reflexive, transitive, symmetric

» A partial order is a relation that is:
— reflexive, transitive, anti-symmetric

« A partially ordered set (a poset) is a pair (S,<) of
a set S and a partial order < over the set

» Examples of posets: (25, ©), (Z, <), (Z, divides)

* Given a poset (S, <), and two elements a € S
and b € S, then the:
— least upper bound (lub) is an element c such that
a<c,b<c,andvVdeS.(@a<dAb<d)=c<d

— greatest lower bound (glb) is an element ¢ such that
c<ac<bandvVdeS.(d<aAnd<b)y=d<c
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* Given a poset (S, <), and two elements a € S
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* lub and glb don’t always exists:

Lub and glb

* Given a poset (S, <), and two elements a € S
and b € S, then the:

— least upper bound (lub) is an element c such that
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Lattices

* Alattice isatuple (S, C, L, T, U, M) such that:
— (S, E) is a poset
- VYaeS.1lCa
- VYaeS.aCT
— Every two elements from S have a lub and a glb
— U is the least upper bound operator, called a join
— Mis the greatest lower bound operator, called a meet

Examples of lattices

* Powerset lattice
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Examples of lattices

» Powerset lattice
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Examples of lattices

* Booleans expressions
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Examples of lattices

» Booleans expressions

ot vin
O 1a U 2V
4N

N/ N
=

[

Examples of lattices
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» Booleans expressions
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