
Overview of LLVM

Architecture of LLVM

Front-end: high-level programming language => LLVM IR

Optimizer: optimize/analyze/secure the program in the IR form

Back-end: LLVM IR => machine code

Optimizer

The optimizer’s job: analyze/optimize/secure programs.

Optimizations are implemented as passes that traverse some portion of a
program to either collect information or transform the program.

A pass is an operation on a unit of IR code.

Pass is an important concept in LLVM.

LLVM IR

- A low-level strongly-typed language-independent, SSA-based
representation.

- Tailored for static analyses and optimization purposes.

Part 1

Part 1 has two kinds of passes:

- Analysis pass (section 1): only analyze code statically
- Transformation pass (section 2 & 3): insert code into the program

Analysis pass (Section 1)

test.c

Void foo (uint32_t int,
 uint32_t * p) {
 ...
}

 Clang

test.bc

LLVM IR opt

mypass.so

stderr

Transformation pass (Section 2 & 3)

test.cpp

Void foo (uint32_t int,
 uint32_t * p) {
 ...
}

Clang++
test.bc

LLVM IR opt

mypass.so

main.cpp

Int main () {
 ...
 foo ()
 ...
}

main.bc

LLVM IR

test-ins.bc

LLVM IR

lib.cpp

lib.bc

LLVM IR

Clang++

Executable

Section 1

Challenges:

- How to traverse instructions in a function

http://releases.llvm.org/3.9.1/docs/ProgrammersManual.html#iterating-over-the-instruction-in-a-function

- How to print to stderr

Section 2 & 3

Challenges:

1. How to traverse basic blocks in a function and instructions in a basic block
2. How to insert function calls to the runtime library

a. Add the function signature to the symbol table of the module

Section 2 & 3

Challenges:

1. How to traverse basic blocks in a function and instructions in a basic block
2. How to insert function calls to the runtime library

a. Add the function signature to the symbol table of the module

Section 2 & 3

Challenges:

1. How to traverse basic blocks in a function and instructions in a basic block
2. How to insert function calls to the runtime library

a. Add the function signature to the symbol table of the module
b. Prepare argument for the function you want to call

Prepare arguments

Class ConstantInt: represent boolean and integral constants.

Prepare arguments

Class ConstantInt: represent boolean and integral constants.

Why do we need to specify Ty?

Prepare arguments

Class ConstantInt: represent boolean and integral constants.

How to get Ty?

Prepare arguments

Class ConstantInt: represent boolean and integral constants.

How to get Ty?

Prepare arguments

What if we need a pointer to an array of integers?

Prepare arguments

What if we need a pointer to an array of integers?

The easiest way to do it is to:

- Create a local constant array by using

Prepare arguments

What if we need a pointer to an array of integers?

The easiest way to do it is to:

- Create a local constant array by using

Prepare arguments

A GlobalVariable is a memory object, so it is always referred to by it address.

The type of an instance of GlobalVariable is pointer to its content (pointer to
type Ty if the constructor above is used).

Prepare arguments

What if we need a pointer to an array of integers?

The easiest way to do it is to:

- Create a local constant by using
- Convert pointer to the correct type:

- LLVM Language Reference Manual is your friend
- Use LLVM API to insert useful instructions you found in the reference manual

 IRBuilder::Create[Instruction Name]

Section 2 & 3

Challenges:

1. How to traverse basic blocks in a function and instructions in a basic block
2. How to insert function calls to the runtime library

a. Add the function signature to the symbol table of the module
b. Prepare argument for the function you want to call
c. Insert function calls

Insert function calls

1. Where to insert:
a. Need to set up the insert point
b. Take advantage of /solution/opt

2. How to insert: IRBuilder::CreateCall

Tips

- Take advantage of /solution/opt
- Take advantage of office hours
- Start early

