Pointer analysis

Pointer Analysis

e QOutline:
— What is pointer analysis
— Intraprocedural pointer analysis

— Interprocedural pointer analysis
« Andersen and Steensgaard

Pointer and Alias Analysis

« Aliases: two expressions that denote the same
memory location.

« Aliases are introduced by:
— pointers
— call-by-reference
— array indexing
— C unions

Useful for what?

* Improve the precision of analyses that require knowing
what is modified or referenced (eg const prop, CSE ...)

 Eliminate redundant loads/stores and dead stores.

X = *p; *xX = ...
. . // is *x dead?
y := *p; // replace with y := x?

 Parallelization of code

— can recursive calls to quick _sort be run in parallel? Yes,
provided that they reference distinct regions of the array.

 Identify objects to be tracked in error detection tools
x.lock() ;

y.unlock(); // same object as x?

Kinds of alias information

* Points-to information (must or may versions)

— at program point, compute a set of pairs of the form p ! x, where
P points to Xx.

— can represent this information

In a points-to graph 0 < X
y

« Alias pairs
— at each program point, compute the set of of all pairs (e,,e,)
where e, and e, must/may reference the same memory.

\ 4
N

« Storage shape analysis »/j

»
>

— at each program point, compute an
abstract description of the pointer structure.

Intraprocedural Points-to Analysis

« Want to compute may-points-to information

l\x-—b‘/l Kela v e Vw\}

e Lattice: D = 2

Flow functions

|

x =k |:X:: k(in) —

[ou

|

X ‘= a + b FXI:a+b(in) =

[ou

Flow functions

|

x 1=y Fy.=y(in) =

[ou

|:x = &y(in) =

Flow functions

X :l= *y |:x = *y(in) =
|

|:*x = y(in) =

Intraprocedural Points-to Analysis

* Flow functions:

kill(z) = Upevarsi(z,v)}
F._.(S) = S — kill(x)
Friags(S) = S kill(x)
Fr=y(S) = S—kill(z) U{(z,v) | (y,v) € S}
Fp=gy(5) = S5 —kill(z) U{(z,y)}
Fr:=+y(S) = S — kill(x) U{(x,v)|3t € Vars.[(y,t) € SA (t,v) € S]}
Fag:=y(S) = let V.= {v| (z,v) € S} in

S — (if V = {v} then kill(v) else 0)
U{(v,t) |v eV A(y,t) € S}

Pointers to dynamically-allocated memory

new T

« Handle statements of the form: x

* One idea: generate a new variable each time the
new statement is analyzed to stand for the new
location:

Fp—=new 7(S) = S — kill(z) U {(x, newvar())}

Example

1l := new Cons

Example solved

1l := new Cons

Ny

V2

A 4

A 4

A 4

V2

A 4

J\
N
ct

A 4

V2

A 4

A 4

A 4

V1

V2

A 4

v
<
w

What went wrong?

 Lattice infinitely tall!
* We were essentially running the program

 |Instead, we need to summarize the infinitely
many allocated objects in a finite way

 New Idea: introduce summary nodes, which will
stand for a whole class of allocated objects.

What went wrong?

« Example: For each new statement with label L,
Introduce a summary node loc, , which stands
for the memory allocated by statement L.

Fr. pi=new 7(S) = S = kill(z) U{(z,locy)}

e Summary nodes can use other criterion for
merging.

Example revisited

Sl: 1 := new Cons

S2: t := new Cons

Example revisited & solved

Sl: 1 := new Cons

lter 1 Ilter 2 Ilter 3
p :=1 T ok | al
P £] I\
= s1 ¥ \/ ' | 1 +{S1l>S2
P 1l —S1—S2 l _}
S2: t := new Cons t """"""""""""""""""" t
>qs1 t bls2] | [1 /s1l[s2 | [1 |»/s1}+/s2
P ')
I o et e
t t
e A e A R
S » S » S » S » S » S
p))

[
v
n
=
v
n
N
[
v
n
=
A
n

&
[
v
n
=
A
n

&

Array aliasing, and pointers to arrays

« Array indexing can cause aliasing:
- a[i] aliasesb[j] If:
 aaliasesbandi=|

« aand b overlap, and i = + k, where k is the amount of
overlap.

« Can have pointers to elements of an array
-p = &a[i]; ...; pt++;

 How can arrays be modeled?
— Could treat the whole array as one location.

— Could try to reason about the array index
expressions: array dependence analysis.

Fields

« Can summarize fields using per field summary

— for each field F, keep a points-to node called F that
summarizes all possible values that can ever be
stored in F

« Can also use allocation sites

— for each field F, and each allocation site S, keep a
points-to node called (F, S) that summarizes all
possible values that can ever be stored in the field F
of objects allocated at site S.

Summary

 We just saw:
— intraprocedural points-to analysis
— handling dynamically allocated memory
— handling pointers to arrays

« But, intraprocedural pointer analysis is not enough.

— Sharing data structures across multiple procedures is one the
big benefits of pointers: instead of passing the whole data
structures around, just pass pointers to them (eg C pass by
reference).

— So pointers end up pointing to structures shared across
procedures.

— If you don’t do an interproc analysis, you'll have to make
conservative assumptions functions entries and function calls.

Conservative approximation on entry

« Say we don’ t have interprocedural pointer
analysis.

* What should the information be at the input of
the following procedure:

global g; x y g
void p(x,y) {

Conservative approximation on entry

« Here are a few solutions:

global g;
void p(x,y) { W

locations
from alloc
sites prior
to this
invocation

X,¥y,9 &
locations
from alloc

sites prior
to this
invocation

* They are all very conservative!

« We can try to do better.

Interprocedural pointer analysis

« Main difficulty in performing interprocedural
pointer analysis is scaling

* One can use a top-down summary based
approach (Wilson & Lam 95), but even these are
hard to scale

Example revisited

 Cost:
— space: store one fact at each prog point
Sl: 1 := new Cons — time: iteration
lter 1 Iter 2 Iter 3

p
82: t := new Cons '"""""_""""""_______4___"""""""_""""; _______________________________ é _
>qs1 t bls2] | [1 /s1l[s2 | [1 |»/s1}+/s2
P ')
I o et e
t £
e A e A R
P] =0 =0

[
v
n
=
v
n
N
[
v
n
=
A
n

&
[
v
n
=
A
n

&

New Idea: store one dataflow fact

« Store one dataflow fact for the whole program

« Each statement updates this one dataflow fact

— use the previous flow functions, but now they take the
whole program dataflow fact, and return an updated
version of it.

Process each statement once, ignoring the order
of the statements

This is called a flow-insensitive analysis.

Flow Iinsensitive pointer analysis

Sl: 1 := new Cons

S2: t := new Cons

Flow Iinsensitive pointer analysis

Sl: 1 := new Cons

S2: t := new Cons

| o4
=t
1 _Zt
ﬂ81 »S2
P
=t

P:\//t

Flow sensitive vs. Insensitive

Sl: 1 := new Cons

Flow-sensitive Soln g Flow-insensitive Soln

S2: t := new Cons

[
v
n
=
v
n
&

What went wrong?

« What happened to the link between p and S17?
— Can’t do strong updates anymore!

— Need to remove all the kill sets from the flow
functions.

« What happened to the self loop on S2?
— We still have to iterate!

Flow insensitive pointer analysis: fixed

Sl: 1 := new Cons

S2: t := new Cons

Flow insensitive pointer analysis: fixed

This is Andersen’s
algorithm ’ 94 Final result \

Sl: 1 := new Cons

lter 1 Ilter 2 Ilter 3
p :=1 I ok | Tl
P £] I\
= s1 ¥ \/ || 1+{S1l>S2
P 1l —S1—S2 l _}
82: t := new Cons '"""_"""_"""_"""_"4;_"_"""_""p"_"""";;""é'_""""""; ___________ é —
1 TN\ N\
>0151 t bls2] | [1 s1l12 T L1 1.2
P ;)
=t -———i ———————————————————————————————
c] ! £
! s _2Z : 1 _fp \{ | 1 _fp \{
sil-s »[S1l(s : R ENES
P N \.)

[
v
n
=
v
n
N
[
v
n
=
A
n

&
[
v
n
=
A
n

&

Flow sensitive vs. insensitive, again

Sl: 1 := new Cons

Flow-sensitive Soln g Flow-insensitive Soln

S2: t := new Cons

=t | 1}-+[s1}-

1l —S1—S2 t
O

[
v
n
=
v
n
&

Flow insensitive loss of precision

* Flow insensitive analysis leads to loss of
precision!

main() {
X = &y;
Flow insensitive analysis tells us that x
may point to z here!
X = &z
}
 However:

— uses less memory (memory can be a big bottleneck
to running on large programs)

— runs faster

In Class Exercise!

Sl: p := new Cons

S2: q := new Cons

In Class Exercise! solved

Sl: p := new Cons

S2: q := new Cons

Worst case complexity of Andersen

Worst case: N2 per
statement, so at least N3
for the whole program.
Andersen is in

fact O(N?3)

New Idea: one successor per node

 Make each node have only one successor.

 This Is an invariant that we want to maintain.

\ 4 \ 4 \ 4 \ 4
a,b,c d,e,f ::> a,b,c »d,e,f

More general case for *x = y

More general case for *x = y

Handling: x = *y

X y

Handling: x = *y

Handling: x = y (what about y = x?)

x y

Handling: x = &y

X y

Handling: x =

X y

y (what about y = x?)

X

X M Y

=Y v \\ v
4

— get the Same

v fory =x

Handling: x =

X y

&y

Our favorite example, once more!

Sl: 1 := new Cons (:)

S2: t := new Cons

@ ® @ ©

Our favorite example, once more!

Sl: 1 := new Cons

S2: t := new Cons

@ ® @ ©

1

—— > v —— >
S1
Q@/
1 P t 1 P t
@
S2 : s1 o 52
=
1l P t 1l P t
—— > \‘//
S1 » S2

Flow insensitive loss of precision

S1: 1 := new Cons . . . Flow-insensitive
Flow-sensitive : Flow-insensitive | jnification-
Subset-based Subset-based ' based
p :=1 [k [aq
1 _f \02/ |
» S =S>\> i
S2: t := new Cons| T t
p | |
1 Ef \s"z/ p el i [1]p][t
1S1152h NS
1l —{S1|—»>S2 l \I/
=t)

P A Sl@

Another example

foo (&3) ;
// i pnts to what?
i = ..

.
LA 4

—

void foo(int* p) {
printf (“sd”, *p) ;
}

Another example

bar () { @
@ i := &a;
2 j := &b; —
() foo (&1)
@ foo (&7)

// i pnts to what?

*i = ...

—

void foo(int* p) {
printf (“sd”, *p) ;
}

’
i J
a b

D ()

Almost linear time

* Time complexity: O(Na(N, N))

L

inverse Ackermann
function

« SO0 slow-growing, it is basically linear in practice

« For the curious: node merging implemented
using UNION-FIND structure, which allows set
union with amortized cost of O(a(N, N)) per op.
Take CSE 202 to learn more!

In Class Exercise!

Sl: p := new Cons

S2: q := new Cons

In Class Exercise! solved

Sl: p := new Cons

1
1
1
1
v : q, y

S2: := new Cons :
q Steensgaard : /X\
v E r S

Andersen

Advanced Pointer Analysis

« Combine flow-sensitive/flow-insensitive

« Clever data-structure design

« Context-sensitivity

