Program Representations

Representing programs

* Goals

Representing programs

* Primary goals
— analysis is easy and effective
« just a few cases to handle
« directly link related things
— transformations are easy to perform
— general, across input languages and target machines

+ Additional goals
— compact in memory
— easy to translate to and from
— tracks info from source through to binary, for source-level
debugging, profilling, typed binaries
— extensible (new opts, targets, language features)
— displayable

Option 1: high-level syntax based IR

* Represent source-level structures and
expressions directly

« Example: Abstract Syntax Tree

Source: AST:
for i := 1 to 10 do for
al[il := bli] * 5;

end

Option 2: low-level IR

* Translate input programs ¢ Standard RTL instrs:
into low-level primitive
chunks, often close to the

target machine assignment x :
unary op X oz

+ Examples: assembly binary op % 1=y op z;
code, virtual machine addressof p := &y;
code (e.g. stack (load % i= *(p + 0):
machines), three-address store [*p + o) = x;
code, register-transfer call R o=)
language (RTL) unary compare op % ?

binary compare = op v

Option 2: low-level IR

Control flow graph containing RTL instructions:

Source:
for i :=1 to 10 do
a[i] := b[i] * 5;

end
tli=41 % 4
t2 1= & b
£3 1= *(t2 + tl)
L4 1= 3 * 5
o =1+ 4
t6 =& a
*(t6 + t5)
is=1i+1

Comparison

Comparison

» Advantages of high-level rep
— analysis can exploit high-level knowledge of
constructs
— easy to map to source code (debugging, profiling)

» Advantages of low-level rep
— can do low-level, machine specific reasoning
— can be language-independent

+ Can mix multiple reps in the same compiler

Components of representation

» Control dependencies: sequencing of operations
— evaluation of if & then
— side-effects of statements occur in right order

+ Data dependencies: flow of definitions from defs
to uses
— operands computed before operations

+ ldeal: represent just dependencies that matter
— dependencies constrain transformations
— fewest dependences = flexibility in implementation

Control dependencies

+ Option 1: high-level representation
— control implicit in semantics of AST nodes

+ Option 2: control flow graph (CFG)
— nodes are individual instructions
— edges represent control flow between instructions

+ Options 2b: CFG with basic blocks
— basic block: sequence of instructions that don’t have
any branches, and that have a single entry point

— BB can make analysis more efficient: compute flow
functions for an entire BB before start of analysis

Control dependencies

» CFG does not capture loops very well

* Some fancier options include:
— the Control Dependence Graph
— the Program Dependence Graph

» More on this later. Let’s first look at data
dependencies

Data dependencies

+ Simplest way to represent data dependencies:
def/use chains

x
y

Def/use chains

SSA

 Directly captures dataflow
— works well for things like constant prop

* But...

+ Ignores control flow
— misses some opt opportunities since conservatively considers all
paths
— not executable by itself (for example, need to keep CFG around)
— not appropriate for code motion transformations

* Must update after each transformation

+ Space consuming

+ Static Single Assignment
— invariant: each use of a variable has only one def

SSA

» Create a new variable for each def
* Insert ¢ pseudo-assignments at merge points

+ Adjust uses to refer to appropriate new names

* Question: how can one figure out where to insert
¢ nodes using a liveness analysis and a
reaching defns analysis.

Converting back from SSA

Converting back from SSA

+ Semantics of X3 1= ¢(Xq, Xy)
— set x5 to X if execution came from ith predecessor

* How to implement ¢ nodes?

+ Semantics of x5 1= d(Xq, Xy)
— set X3 to X if execution came from ith predecessor

* How to implement ¢ nodes?
— Insert assignment x; := X, along 1% predecessor
— Insert assignment X, := x, along 2" predecessor

+ If register allocator assigns X;, X, and x; to the
same register, these moves can be removed
— X; .. X, usually have non-overlapping lifetimes, so this
kind of register assignment is legal

Recall: Common Sub-expression Elim

+ Want to compute when an expression is
available in a var

* Domain: |, 2, , 7> Eo 25 g;)

g;ﬂxac‘lxg Vo, Ec Exml

Recall: CSE Flow functions

FX::YopZ(in)zin_{x_)*}

Example

i:=a+b

x :=1i*4

ixa4
i+1

...
T
[¢]
i

S X
out {X=YopZ [X=YAX=Z}
L Fyoy(in) =in—{ X = *}
- x:=v(in) =in—{X—*
X =Y —{*=> . X.}u
out {X—-E|Y—>Eecin}
Example

S/_/Qéuadrj‘ j
ié—-}aéﬂj—»z

[1"'/?‘>Je&]

,.
WO
[¢]

Problems

* z:=j*4is notoptimized to z := X, even though x
contains the value j * 4

* m:=b + ais not optimized, even though a + b
was already computed

* w:=4*mit not optimized to w := x, even though
X contains the value 4 *m

Problems: more abstractly

+ Available expressions overly sensitive to name
choices, operand orderings, renamings,
assignments

+ Use SSA: distinct values have distinct names
» Do copy prop before running available exprs

+ Adopt canonical form for commutative ops

Example in SSA

X =Yop2z Fx=vopz(in) =

Fmsralino in) =

Example in SSA

X :=Y op 2 FX:ZYopz(in)=inU{XaY0pZ}
out
ing ing
Fy :=¢(YZ)(|nO, iny) = (ingNiing) U
10“‘ {X=E|Y—=E€innAZ—E€in}

Example in SSA

i:=a+hb

x =i * 4

AN
.

y =i * 4

-
wonn

u QB

Example in SSA

i, := a; + by

x; =i, * 4
= iy 0= @(iy, i)
i, 1= ¢ y, =i, * 4
z; (=i, * 4 i; =i, +1

What about pointers?

» Pointers complicate SSA. Several options.

» Option 1: don’t use SSA for pointed to variables
» Option 2: adapt SSA to account for pointers

» Option 3: define src language so that variables
cannot be pointed to (eg: Java)

SSA helps us with CSE

+ Let’s see what else SSA can help us with

+ Loop-invariant code motion

Loop-invariant code motion

» Two steps: analysis and transformations

» Stepl: find invariant computations in loop
— invariant: computes same result each time evaluated

+ Step 2: move them outside loop
— to top if used within loop: code hoisting
— to bottom if used after loop: code sinking

Example
x =3
y=4‘ ‘y:=5
N Y
z :=x *y
q:i=y*y
w:i=y+2
N
Pi=w+y
x :=x+1
q:=q+1

Example

x = 3

vy =4 |
N
q;=y*
wi=y +
P =
q =

Detecting loop invariants

* An expression is invariant in a loop L iff:

(base cases)
— it's a constant
— it's a variable use, all of whose defs are outside of L

(inductive cases)

— it's a pure computation all of whose args are loop-
invariant

— it's a variable use with only one reaching def, and the
rhs of that def is loop-invariant

Computing loop invariants

» Option 1: iterative dataflow analysis

— optimistically assume all expressions loop-invariant,
and propagate

* Option 2: build def/use chains

— follow chains to identify and propagate invariant
expressions

* Option 3: SSA
— like option 2, but using SSA instead of def/use chains

Example using def/use chains

» An expression is invariant

in a loop L iff:

(base cases)
— it's a constant

— it's a variable use, all of
whose defs are outside of L

(inductive cases)
— it's a pure computation all of
whose args are loop-invariant
— it's a variable use with only
one reaching def, and the rhs
of that def is loop-invariant

M
WO

Example using def/use chains

* An expression is invariant
in a loop L iff:

(base cases)
— it's a constant

— it's a variable use, all of
whose defs are outside of L

(inductive cases)
— it's a pure computation all of
whose args are loop-invariant
— it's a variable use with only
one reaching def, and the rhs
of that def is loop-invariant

Loop invariant detection using SSA

* An expression is invariant in a loop L iff:

(base cases)
— it's a constant
— it's a variable use, all of whose single defs are outside
of L
(inductive cases)

— it's a pure computation all of whose args are loop-
invariant

— it's a variable use whose single reaching def, and the
rhs of that def is loop-invariant

* ¢ functions are not pure

Example using SSA

x, :=3 N . P . .
n expression is invariant in
4] [yo=5] a loop L iff:
N\ N (base cases)
X, 1= ¢(x;,%3) — it's a constant
¥ 1= §(¥1,¥2,¥3) — it's a variable use, all of
Z, 1= x, ¥y, whose single defs are outside
Q=Y Yy ofL
Wi = ys + 2 (inductive cases)
— it's a pure computation all of
whose args are loop-invariant
— it's a variable use whose
Wy 1= 0 (wy,w,) single reaching def, and the
P oi= Wy + v rhs of that def is loop-invariant
xX; 1= X +1 « ¢functions are not pure
G =g +1

Example using SSA and preheader

* An expression is invariant in
a loop L iff:

(base cases)
— it's a constant

— it's a variable use, all of

Summary: Loop-invariant code motion

» Two steps: analysis and transformations

+ Stepl: find invariant computations in loop
— invariant: computes same result each time evaluated

» Step 2: move them outside loop
— to top if used within loop: code hoisting
— to bottom if used after loop: code sinking

%X, 1= ¢ (xy,%5) whose single defs are outside
Zy =X, ¥y of L
= * " .
:1 _ f . Z’z (inductive cases)
4 2 — it's a pure computation all of
W, : whose args are loop-invariant
— it's a variable use whose
Wy 1= §(wy,wp) single reaching def, and the
L rhs of that def is loop-invariant
Py = W3 +y;
X3 1= % + 1 » ¢ functions are not pure
D =g + 1
Code motion

+ Say we found an invariant computation, and we
want to move it out of the loop (to loop pre-
header)

* Whenis it legal?

* Need to preserve relative order of invariant
computations to preserve data flow among move
statements

* Need to preserve relative order between
invariant computations and other computations

Example

;<
WO
=

l

z !'=0 &&

i <100 ?
:=a*b q:=x+1
i=x / z
=i+ 1

Lesson from example: domination restriction

» To move statement S to loop pre-header, S must
dominate all loop exits
[A dominates B when all paths to B first pass through A]

+ Otherwise may execute S when never executed
otherwise

* If Sis pure, then can relax this constraint at cost
of possibly slowing down the program

Domination restriction in for loops

Domination restriction in for loops

After

Before

Avoiding domination restriction

+ Domination restriction strict
— Nothing inside branch can be moved
— Nothing after a loop exit can be moved

» Can be circumvented through loop normalization
— while-do => if-do-while

Another example

Data dependence restriction

Avoiding data restriction

*» TomoveS:z := x op y:

S must be the only assignment to z in loop, and
no use of z in loop reached by any def other
than S

» Otherwise may reorder defs/uses

Avoiding data restriction

Summary of Data dependencies

z, :=5
i, :=0 .
« Restriction unnecessary
i in SSAIll
Z2 1= 6(24,2,) « Implementation of phi
2= by nodes as moves will
:j Tt ! cope with re-ordered
iy =i, 41 defs/uses
i3 <N ?

+ We've seen SSA, a way to encode data
dependencies better than just def/use chains
— makes CSE easier
— makes loop invariant detection easier
— makes code motion easier

+ Now we move on to looking at how to encode
control dependencies

Control Dependencies

Control Dependencies

» A node (basic block) Y is control-dependent on
another X iff X determines whether Y executes

— there exists a path from X to Y s.t. every node in the
path other than X and Y is post-dominated by Y

— X'is not post-dominated by Y

* A node (basic block) Y is control-dependent on
another X iff X determines whether Y executes

— there exists a path from X to Y s.t. every node in the
path other than X and Y is post-dominated by Y

— Xis not post-dominated by Y
- NOT hotf - dlomimaid, 44 Y

ol Bk .
uﬂz\q‘)A UJ\VW‘\”’\ \ } PM— dovumodid Lﬂy
~ o

Example

Example
[7"0(Contiol gl i
D ey o 2
G 2
— E A
e
V2 5 ¢
/AN Vg
304 7

Control Dependence Graph

» Control dependence graph: Y descendent of X iff
Y is control dependent on X

— label each child edge with required condition

— group all children with same condition under region

node

Program dependence graph: super-impose
dataflow graph (in SSA form or not) on top of the
control dependence graph

Example

Cobiol sl alatron
PR RN A
G "2
E A

(ontiol ol alafron
D ey o 2

E

Another example

10

Another example

%, i
VNS
R R
| \\
b o6, B
I
R
/X
B B

Another example

G)ﬁ = 0;

while@.,. do
@ iy = 00iy, i; Okze

R
@ x 1= i3 * by 3 im / \
if @ then 1::,1!,-’-‘| () @
0wl Y NN ;
else @@ @ ‘/1':‘1-} \\\\
O vo-or | @3]
end e L

@y; = 0y, v2)i @

A iz 0/1“‘4)’ | J X
@ print(yz); @ w ¢ ¢
@17 =iz + 1; @ /

©

end

Summary of Control Depence Graph

» More flexible way of representing control-
depencies than CFG (less constraining)

* Makes code motion a local transformation

» However, much harder to convert back to an
executable form

Course summary so far

« Dataflow analysis

— flow functions, lattice theoretic framework, optimistic iterative
analysis, precision, MOP

» Advanced Program Representations
— SSA, CDG, PDG

Along the way, several analyses and opts

— reaching defns, const prop & folding, available exprs & CSE,
liveness & DAE, loop invariant code motion

« Pointer analysis

— Andersen, Steensguaard, and long the way: flow-insensitive
analysis

« Next: dealing with procedures

11

