Program Representations

Representing programs

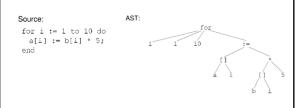
· Goals

Representing programs

- · Primary goals
 - analysis is easy and effective
 - just a few cases to handle
 - directly link related things
 - transformations are easy to perform
 - general, across input languages and target machines
- · Additional goals
 - compact in memory
 - easy to translate to and from
 - tracks info from source through to binary, for source-level debugging, profilling, typed binaries
 - extensible (new opts, targets, language features)
 - displayable

Option 1: high-level syntax based IR

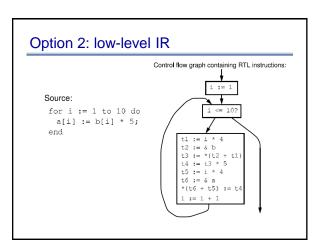
- Represent source-level structures and expressions directly
- · Example: Abstract Syntax Tree



Option 2: low-level IR

- Translate input programs into low-level primitive chunks, often close to the target machine
- Examples: assembly code, virtual machine code (e.g. stack machines), three-address code, register-transfer language (RTL)
- Standard RTL instrs:

assignment	x := y;
unary op	х := ор у;
binary op	x := y op z;
address-of	p := &y
load	x := *(p + 0);
store	*(p + o) := x;
call	x := f();
unary compare	орх?
binary compare	кору?



Comparison

Comparison

- · Advantages of high-level rep
 - analysis can exploit high-level knowledge of constructs
 - easy to map to source code (debugging, profiling)
- · Advantages of low-level rep
 - can do low-level, machine specific reasoning
 - can be language-independent
- Can mix multiple reps in the same compiler

Components of representation

- · Control dependencies: sequencing of operations
 - evaluation of if & then
 - side-effects of statements occur in right order
- Data dependencies: flow of definitions from defs to uses
 - operands computed before operations
- · Ideal: represent just dependencies that matter
 - dependencies constrain transformations
 - fewest dependences \Rightarrow flexibility in implementation

Control dependencies

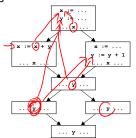
- Option 1: high-level representation
 - control implicit in semantics of AST nodes
- Option 2: control flow graph (CFG)
 - nodes are individual instructions
 - edges represent control flow between instructions
- · Options 2b: CFG with basic blocks
 - basic block: sequence of instructions that don't have any branches, and that have a single entry point
 - BB can make analysis more efficient: compute flow functions for an entire BB before start of analysis

Control dependencies

- CFG does not capture loops very well
- Some fancier options include:
 - the Control Dependence Graph
 - the Program Dependence Graph
- More on this later. Let's first look at data dependencies

Data dependencies

 Simplest way to represent data dependencies: def/use chains

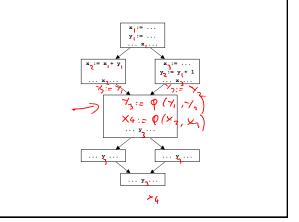


Def/use chains

- · Directly captures dataflow
 - works well for things like constant prop
- But...
- Ignores control flow
 - misses some opt opportunities since conservatively considers all paths
 - not executable by itself (for example, need to keep CFG around)
 - not appropriate for code motion transformations
- · Must update after each transformation
- Space consuming

SSA

- · Static Single Assignment
 - invariant: each use of a variable has only one def



SSA

- · Create a new variable for each def
- · Adjust uses to refer to appropriate new names
- Question: how can one figure out where to insert φ nodes using a liveness analysis and a reaching defns analysis.

Converting back from SSA

- Semantics of $x_3 := \phi(x_1, x_2)$
 - set x₃ to x_i if execution came from ith predecessor

Converting back from SSA

- Semantics of $x_3 := \phi(x_1, x_2)$
 - set \boldsymbol{x}_3 to \boldsymbol{x}_i if execution came from ith predecessor
- How to implement ϕ nodes?
 - Insert assignment $x_3 := x_1$ along 1st predecessor
 - Insert assignment $x_3 := x_2$ along 2^{nd} predecessor
- If register allocator assigns x₁, x₂ and x₃ to the same register, these moves can be removed
 - $-\,x_1\,..\,x_n$ usually have non-overlapping lifetimes, so this kind of register assignment is legal

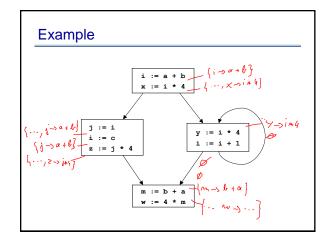
Recall: Common Sub-expression Elim

- Want to compute when an expression is available in a var
- Domain: $\{x \rightarrow E_1, y \rightarrow E_2, z \rightarrow E_3\}$ $S = \{x \rightarrow E \mid x \in Vax, E \in Exp^2\}$ $0 = 2^{S}$ 1 = S 1 = 0 $V \in A$

Recall: CSE Flow functions

$$\begin{array}{ll} & \underset{|\mathbf{X}:=\mathbf{Y}\text{ op }\mathbf{Z}}{\stackrel{\text{}}{\downarrow}} & F_{X:=\mathbf{Y}\text{ op }Z}(in) = in - \{X \to {}^*\} \\ & - \{{}^* \to ... \, X \, ... \} \cup \\ & \{X \to \mathbf{Y} \text{ op } Z \mid X \neq \mathbf{Y} \land X \neq Z\} \end{array}$$

$$\begin{array}{ll} & \underset{|\mathbf{X}:=\mathbf{Y}|}{\stackrel{\text{}}{\downarrow}} & out & F_{X:=\mathbf{Y}}(in) = in - \{X \to {}^*\} \\ & - \{{}^* \to ... \, X \, ... \} \cup \\ & \{X \to E \mid Y \to E \in in \} \end{array}$$



Problems

- z := j * 4 is not optimized to z := x, even though x contains the value j * 4
- m := b + a is not optimized, even though a + b was already computed
- w := 4 * m it not optimized to w := x, even though x contains the value 4 *m

Problems: more abstractly

- Available expressions overly sensitive to name choices, operand orderings, renamings, assignments
- Use SSA: distinct values have distinct names
- · Do copy prop before running available exprs
- · Adopt canonical form for commutative ops

Example in SSA

Example in SSA

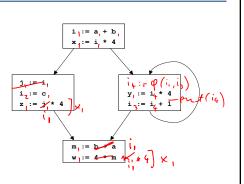
$$\begin{array}{c} & \downarrow \text{ in } \\ \hline \textbf{x} := \textbf{Y} \text{ op } \textbf{Z} \\ \hline \downarrow \text{ out } \end{array}$$

$$F_{X := \text{Y} \text{ op } \textbf{Z}}(\text{in}) = \text{in} \cup \{ \text{ } \textbf{X} \rightarrow \textbf{Y} \text{ op } \textbf{Z} \}$$

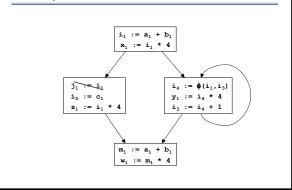
$$\begin{array}{c} \textbf{in}_{o} \\ \hline \textbf{x} := \boldsymbol{\phi}(\textbf{Y}, \textbf{Z}) \\ \hline \end{pmatrix} \text{ out }$$

$$F_{X := \boldsymbol{\phi}(\textbf{Y}, \textbf{Z})}(\text{in}_{0}, \text{in}_{1}) = (\text{in}_{0} \cap \text{in}_{1}) \cup \\ \{ \textbf{X} \rightarrow \textbf{E} \mid \textbf{Y} \rightarrow \textbf{E} \in \text{in}_{0} \land \textbf{Z} \rightarrow \textbf{E} \in \text{in}_{1} \}$$

Example in SSA



Example in SSA



What about pointers?

- · Pointers complicate SSA. Several options.
- · Option 1: don't use SSA for pointed to variables
- · Option 2: adapt SSA to account for pointers
- Option 3: define src language so that variables cannot be pointed to (eg: Java)

SSA helps us with CSE

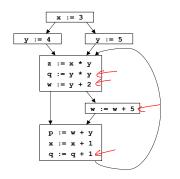
- · Let's see what else SSA can help us with
- Loop-invariant code motion

Loop-invariant code motion

- · Two steps: analysis and transformations
- · Step1: find invariant computations in loop
 - invariant: computes same result each time evaluated
- · Step 2: move them outside loop
 - to top if used within loop: code hoisting
 - to bottom if used after loop: code sinking

x := 3 y := 4 y := 5 z := x * y q := y * y w := y + 2 w := w + 5 p := w + y x := x + 1 q := q + 1

Example



Detecting loop invariants

· An expression is invariant in a loop L iff:

(base cases)

and X

- it's a constant
- $\mbox{--}$ it's a variable use, all of whose defs are outside of L

(inductive cases)

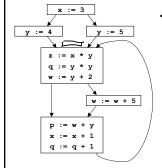
a= 6 => f(a)= f(b)

- it's a pure computation all of whose args are loop-invariant
- it's a variable use with only one reaching def, and the rhs of that def is loop-invariant

Computing loop invariants

- Option 1: iterative dataflow analysis
 - optimistically assume all expressions loop-invariant, and propagate
- Option 2: build def/use chains
 - follow chains to identify and propagate invariant expressions
- · Option 3: SSA
 - like option 2, but using SSA instead of def/use chains

Example using def/use chains



 An expression is invariant in a loop L iff:

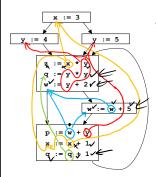
(base cases)

- it's a constant
- it's a variable use, all of whose defs are outside of L

(inductive cases)

- it's a pure computation all of whose args are loop-invariant
- it's a variable use with only one reaching def, and the rhs of that def is loop-invariant

Example using def/use chains



 An expression is invariant in a loop L iff:

(base cases)

- it's a constant
- it's a variable use, all of whose defs are outside of L

(inductive cases)

- it's a pure computation all of whose args are loop-invariant
- it's a variable use with only one reaching def and the rhs of that def is loop-invariant

Loop invariant detection using SSA

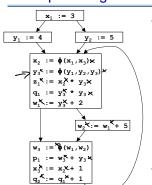
· An expression is invariant in a loop L iff:

(base cases)

- it's a constant
- it's a variable use, all of whose single defs are outside of L

(inductive cases)

- it's a pure computation all of whose args are loopinvariant
- it's a variable use whose single reaching def, and the rhs of that def is loop-invariant
- φ functions are not pure



 An expression is invariant in a loop L iff:

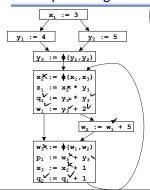
(base cases)

- it's a constant
 - it's a variable use, all of whose single defs are outside of L

(inductive cases)

- it's a pure computation all of whose args are loop-invariant
- it's a variable use whose single reaching def, and the rhs of that def is loop-invariant
- ϕ functions are not pure

Example using SSA and preheader



 An expression is invariant in a loop L iff:

(base cases)

- it's a constant
- it's a variable use, all of whose single defs are outside of L

(inductive cases)

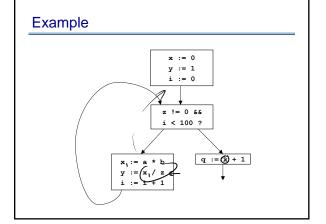
- it's a pure computation all of whose args are loop-invariant
- it's a variable use whose single reaching def, and the rhs of that def is loop-invariant
- ϕ functions are not pure

Summary: Loop-invariant code motion

- Two steps: analysis and transformations
- · Step1: find invariant computations in loop
 - invariant: computes same result each time evaluated
- · Step 2: move them outside loop
 - to top if used within loop: code hoisting
 - to bottom if used after loop: code sinking

Code motion

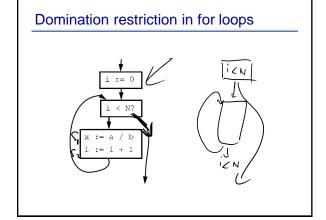
- Say we found an invariant computation, and we want to move it out of the loop (to loop preheader)
- · When is it legal?
- Need to preserve relative order of invariant computations to preserve data flow among move statements
- Need to preserve relative order between invariant computations and other computations



Lesson from example: domination restriction

- To move statement S to loop pre-header, S must dominate all loop exits

 [A dominates B when all paths to B first pass through A]
- Otherwise may execute S when never executed otherwise
- If S is pure, then can relax this constraint at cost of possibly slowing down the program

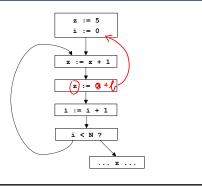


Domination restriction in for loops Before After i := 0 i < N? x := a / b i := i + 1 i < N?

Avoiding domination restriction

- · Domination restriction strict
 - Nothing inside branch can be moved
 - Nothing after a loop exit can be moved
- Can be circumvented through loop normalization
 while-do => if-do-while

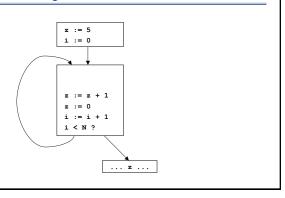
Another example



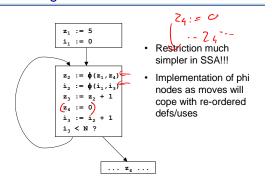
Data dependence restriction

- To move S: z := x op y:
 - S must be the only assignment to ${\bf z}$ in loop, and no use of ${\bf z}$ in loop reached by any def other than S
- · Otherwise may reorder defs/uses

Avoiding data restriction



Avoiding data restriction

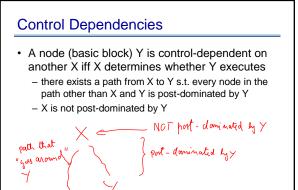


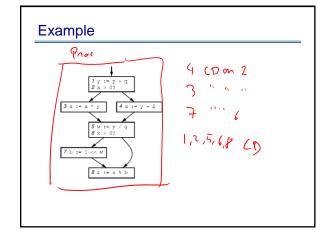
Summary of Data dependencies

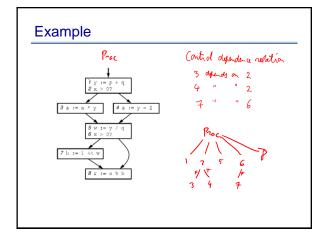
- We've seen SSA, a way to encode data dependencies better than just def/use chains
 - makes CSE easier
 - makes loop invariant detection easier
 - makes code motion easier
- Now we move on to looking at how to encode control dependencies

Control Dependencies

- A node (basic block) Y is control-dependent on another X iff X determines whether Y executes
 - there exists a path from X to Y s.t. every node in the path other than X and Y is post-dominated by Y
 - X is not post-dominated by Y

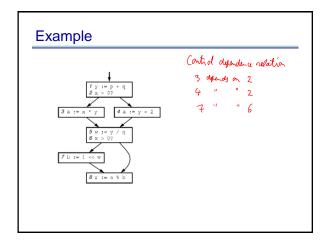


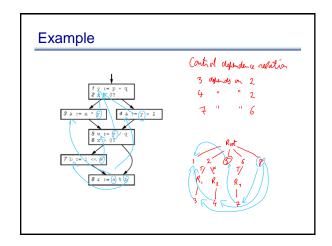




Control Dependence Graph Control dependence graph: Y descendent of X iff Y is control dependent on X label each child edge with required condition group all children with same condition under region node Program dependence graph: super-impose

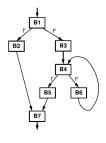
control dependence graph



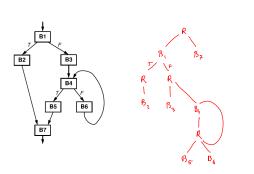


dataflow graph (in SSA form or not) on top of the

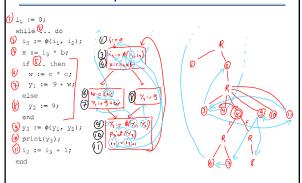
Another example



Another example



Another example



Summary of Control Depence Graph

- More flexible way of representing controldepencies than CFG (less constraining)
- · Makes code motion a local transformation
- However, much harder to convert back to an executable form

Course summary so far

- · Dataflow analysis
 - flow functions, lattice theoretic framework, optimistic iterative analysis, precision, MOP
- Advanced Program Representations
 - SSA, CDG, PDG
- Along the way, several analyses and opts
 - reaching defns, const prop & folding, available exprs & CSE, liveness & DAE, loop invariant code motion
- · Next: dealing with pointers