
Another example: constant prop

• Set D =

X := N

in

out

FX := N(in) =

X := Y op Z

in

out

FX := Y op Z(in) =



Another example: constant prop

• Set D = 2 { x ! N | x 2 Vars Æ N 2 Z }

X := N

in

out

FX := N(in) = in – { X ! * } [ { X ! N }

X := Y op Z

in

out

FX := Y op Z(in) = in – { X ! * } [
{ X ! N | ( Y ! N1 ) 2 in Æ

( Z ! N2 ) 2 in Æ
N = N1 op N2 }



Another example: constant prop

*X := Y

in

out

F*X := Y(in) =

X := *Y

in

out

FX := *Y(in) =



Another example: constant prop

*X := Y

in

out

F*X := Y(in) = in – { Z ! * | Z 2 may-point(X) }

[ { Z ! N | Z 2 must-point-to(X) Æ
Y ! N 2 in }

[ { Z ! N | (Y ! N) 2 in Æ
(Z ! N) 2 in }

X := *Y

in

out

FX := *Y(in) = in – { X ! * }

[ { X ! N  | 8 Z 2 may-point-to(Y) .

(Z ! N) 2 in } 



Another example: constant prop

X := G(...)

in

out

FX := G(...)(in) =

*X := *Y + *Z

in

out

F*X := *Y + *Z(in) =



Another example: constant prop

X := G(...)

in

out

FX := G(...)(in) = ;

*X := *Y + *Z

in

out

F*X := *Y + *Z(in) = Fa := *Y;b := *Z;c := a + b; *X := c(in)



Another example: constant prop

s: if (...)

in

out[0] out[1]

merge   

out

in[0] in[1]



Lattice

• (D, ⊑, ⊥, ⊤, ⊔, ⊓) =



Lattice

• (D, ⊑, ⊥, ⊤, ⊔, ⊓) = 

(2 A , ¶, A, ;, Å, [)

where A = { x ! N | x ∊ Vars Æ N ∊ Z }



Example

x := 5

v := 2

x := x + 1

w := v + 1

w := 3

y := x * 2

z := y + 5

w := w * v



Another Example

x := 5

a := x + 10

x := x + 1

x := x - 1

b := x + 10



Another Example starting at top

x := 5

a := x + 10

x := x + 1

x := x - 1

b := x + 10



Back to lattice

• (D, ⊑, ⊥, ⊤, ⊔, ⊓) = 

(2 A , ¶, A, ;, Å, [)

where A = { x ! N | x ∊ Vars Æ N ∊ Z }

• What’s the problem with this lattice?



Back to lattice

• (D, ⊑, ⊥, ⊤, ⊔, ⊓) = 

(2 A , ¶, A, ;, Å, [)

where A = { x ! N | x ∊ Vars Æ N ∊ Z }

• What’s the problem with this lattice?

• Lattice is infinitely high, which means we can’t 

guarantee termination



Better lattice

• Suppose we only had one variable



Better lattice

• Suppose we only had one variable

• D = {⊥, ⊤ } [ Z

• 8 i ∊ Z . ⊥ ⊑ i Æ i ⊑ ⊤

• height = 3



For all variables

• Two possibilities

• Option 1: Tuple of lattices

• Given lattices (D1, v1, ?1, >1, t1, u1) ... (Dn, vn, ?n, >n, 

tn, un) create:

tuple lattice Dn =



For all variables

• Two possibilities

• Option 1: Tuple of lattices

• Given lattices (D1, v1, ?1, >1, t1, u1) ... (Dn, vn, ?n, >n, 

tn, un) create:

tuple lattice Dn = ((D1 £ ... £ Dn), v, ?, >, t, u) where

? = (?1, ..., ?n)

> = (>1, ..., >n)

(a1, ..., an) t (b1, ..., bn) = (a1 t1 b1, ..., an tn bn)

(a1, ..., an) u (b1, ..., bn) = (a1 u1 b1, ..., an un bn)

height = height(D1) + ... + height(Dn)



For all variables

• Option 2: Map from variables to single lattice

• Given lattice (D, v1, ?1, >1, t1, u1) and a set V, create:

map lattice V ! D = (V ! D, v, ?, >, t, u) 



Back to example

X := Y op Z

in

out

FX := Y op Z(in) =



Back to example

X := Y op Z

in

out

FX := Y op Z(in) = in [ X ! in(Y) op in(Z) ]

where a op b = 



General approach to domain design

• Simple lattices:

– boolean logic lattice

– powerset lattice

– incomparable set: set of incomparable values, plus 

top and bottom (eg const prop lattice)

– two point lattice: just top and bottom

• Use combinators to create more complicated 

lattices

– tuple lattice constructor

– map lattice constructor



May vs Must

• Has to do with definition of computed info

• Set of x ! y must-point-to pairs

– if we compute x ! y, then, then during program 

execution, x must point to y

• Set of x! y may-point-to pairs

– if during program execution, it is possible for x to point 
to y, then we must compute x ! y



May vs must

May Must

most optimistic 

(bottom)

most conservative 

(top)

safe

merge



May vs must

May Must

most optimistic 

(bottom)

empty set full set

most conservative 

(top)

full set empty set

safe overly big overly small

merge [ Å



Common Sub-expression Elim

• Want to compute when an expression is 

available in a var

• Domain:



Common Sub-expression Elim

• Want to compute when an expression is 

available in a var

• Domain:



Flow functions

X := Y op Z

in

out

FX := Y op Z(in) = 

X := Y

in

out

FX := Y(in) =



Flow functions

X := Y op Z

in

out

FX := Y op Z(in) = in – { X ! * } 

– { * ! ... X ... } [
{ X ! Y op Z  | X  Y Æ X  Z}

X := Y

in

out

FX := Y(in) = in – { X ! * } 

– { * ! ... X ... } [
{ X ! E  | Y ! E 2 in }



Example

x := read()

v := a + b

x := x + 1

w := x + 1

w := x + 1

a := w

v := a + b

z := x + 1

t := a + b



Direction of analysis

• Although constraints are not directional, flow 
functions are

• All flow functions we have seen so far are in the 
forward direction

• In some cases, the constraints are of the form
in = F(out)

• These are called backward problems.

• Example: live variables
– compute the set of variables that may be live



Live Variables

• A variable is live at a program point if it will be 

used before being redefined

• A variable is dead at a program point if it is 

redefined before being used



Example: live variables

• Set D =

• Lattice: (D, v, ?, >, t, u)  =



Example: live variables

• Set D = 2 Vars

• Lattice: (D, v, ?, >, t, u) = (2Vars, µ, ; ,Vars, [, 

Å)

X := Y op Z

in

out

FX := Y op Z(out) =



Example: live variables

• Set D = 2 Vars

• Lattice: (D, v, ?, >, t, u) = (2Vars, µ, ; ,Vars, [, 

Å)

X := Y op Z

in

out

FX := Y op Z(out) = out – { X } [ { Y, Z}



Example: live variables

x := 5

y := x + 2

x := x + 1 y := x + 10

... y ...



Example: live variables

x := 5

y := x + 2

x := x + 1 y := x + 10

... y ...How can we remove 
the x := x + 1 stmt?



Revisiting assignment

X := Y op Z

in

out

FX := Y op Z(out) = out – { X } [ { Y, Z}



Revisiting assignment

X := Y op Z

in

out

FX := Y op Z(out) = out – { X } [ { Y, Z}



Theory of backward analyses

• Can formalize backward analyses in two ways

• Option 1: reverse flow graph, and then run 

forward problem

• Option 2: re-develop the theory, but in the 

backward direction



Precision

• Going back to constant prop, in what cases 

would we lose precision?



Precision

• Going back to constant prop, in what cases 

would we lose precision?

if (p) {

x := 5;

} else

x := 4;

}

...

if (p) {

y := x + 1

} else {

y := x + 2

}

... y ...

if (...) {

x := -1;

} else

x := 1;

}

y := x * x;

... y ...

x := 5

if (<expr>) {

x := 6

}

... x ...

where <expr> is 

equiv to false



Precision

• The first problem: Unreachable code

– solution: run unreachable code removal before

– the unreachable code removal analysis will do its 

best, but may not remove all unreachable code

• The other two problems are path-sensitivity 

issues

– Branch correlations: some paths are infeasible

– Path merging: can lead to loss of precision



MOP: meet over all paths

• Information computed at a given point is the 

meet of the information computed by each path 

to the program point

if (...) {

x := -1;

} else

x := 1;

}

y := x * x;

... y ...



MOP

• For a path p, which is a sequence of statements 

[s1, ..., sn] , define: Fp(in) = Fsn
( ...Fs1

(in) ... )

• In other words: Fp = 

• Given an edge e, let paths-to(e) be the (possibly 

infinite) set of paths that lead to e

• Given an edge e, MOP(e) = 

• For us, should be called JOP (ie: join, not meet)



MOP vs. dataflow

• MOP is the “best” possible answer, given a fixed 

set of flow functions

– This means that MOP v dataflow at edge in the CFG

• In general, MOP is not computable (because 

there can be infinitely many paths)

– vs dataflow which is generally computable (if flow fns 

are monotonic and height of lattice is finite)

• And we saw in our example, in general,

MOP  dataflow 



MOP vs. dataflow

• However, it would be great if by imposing some 

restrictions on the flow functions, we could 

guarantee that dataflow is the same as MOP. 

What would this restriction be?

x := -1;

y := x * x;

... y ...

x := 1;

y := x * x;

... y ...

Merge

x := -1; x := 1;

Merge

y := x * x;

... y ...

Dataflow MOP



MOP vs. dataflow

• However, it would be great if by imposing some 

restrictions on the flow functions, we could 

guarantee that dataflow is the same as MOP. 

What would this restriction be?

• Distributive problems. A problem is distributive if:

8 a, b . F(a t b) = F(a) t F(b)

• If flow function is distributive, then MOP = 

dataflow



Summary of precision

• Dataflow is the basic algorithm

• To basic dataflow, we can add path-separation
– Get MOP, which is same as dataflow for distributive 

problems

– Variety of research efforts to get closer to MOP for 
non-distributive problems

• To basic dataflow, we can add path-pruning
– Get branch correlation

• To basic dataflow, can add both: 
– meet over all feasible paths


