Another example: constant prop

. SetD= f?(l\KAN | x & Vay, NéZ})

lin
m Fy=n@n) =t *—’E)C‘!Sf}

VL XN}

FX::YopZ(in): (/“ llX - *}
UR x> N) VN, €
2N 'l

Another example: constant prop

e« SetD=2{x—>N|xevasANeZ}

lin
[x := x] Fron(in)=in—{X >*}U{X >N}
out
X = ¥iog z Frmvopz(in) =in = {X = *} U
| out {X=>N|[(Y—=N;)einA
(Z—N,)einA
N=N1N2}

Another example: constant prop

X := *y Fy = +y(in) = ”‘\‘L\x -\ (?

Vixasn|pze mit(v)
(Z»N)er‘w}

Fuy = y(in) = l’V\ —I\Z’B(I Z & M{)f{ﬁ()

h L\x—\é’, Kv%}

Another example: constant prop

l in
X 1= *y Fy.—sy(in)=in—{X —*}
U{X —= N |V Z e may-point-to(Y) .

l out

(Z—>N)ein}
inym\N @'$N
Fux.-y(in) =in—{Z — *| Z € may-point(X) }
me o U{Z — N | Z € must-point-to(X) A
out Y—=Nein}
{-n U{Z—>N|(Y—>N)ein/\]
(Z—N)ein}

Another example: constant prop

lin .
B al] Py i -

l out

l in
Frooom = #

l out

Another example: constant prop

l in
F*x =Y+ *Z(in) = Fa =*Ybi=*Zci=a+ b X = c(in

l out

l in
Fyain) = 0

l out

Another example: constant prop

\x g

lin X :zg
N~
out[0] out[1]
g va& ‘:}
\x'\ﬂ iy

5D

in[0] in[1] [\ £33)

{ Y- 10}
| out N\

Lattice

Lattice

e (D,g L, T,U,N)=
(24,2,A,0,n,U)
where A={x—>N|xeVars\NeZ}

Example

/

(4

s gy
=2

L\K»W/ v 1}

P
i
w

')

L

N

+
[LIN]

e
(%)

KAE vnt,
WY Yy 1,

2D

Another Example

x:=5__ | xN&
a :=x+ 10
a5
=S
)
,'\x-sc,o,>.<)

®
o
L
+
"

-1 Lwtr\(,en»)lE}
bess, aig)

Another Example starting at top

x :=5__ | PR
a :=x + 10
koo 2g)
g . e
x:—x+1\
x :=x -1 ~
o
\g/

Back to lattice

* D,E L, T,u,nN)=
(2A,2,A,0,n,0)
where A={x —>N|xeVars\NeZ}
()

* What's the problem with this lattice?

Back to lattice

* D,E, L, T,u,n)=
(22, 2,A,0,n, V)
where A={x—>N|xeVars\NeZ}

* What's the problem with this lattice?

« Lattice is infinitely high, which means we can’t
guarantee termination

Better lattice

» Suppose we only had one variable

o
NG

C<-| fo} }«7}3

Better lattice

» Suppose we only had one variable
Nt coutont

Te
e
NV~
\LC//%(panlly contonts
. D={L,T}uZ

e VieZ.LCIiAIET
+ height=870

For all variables

» Two possibilities

» Option 1: Tuple of lattices

+ Given lattices (Dy, Ty, L, T4, Uy, My) .. Oy E Ly T

Uy, M) create:

tuple lattice D" =

For all variables

* Two possibilities '
+ Option 1: Tuple of lattices (,L/([)
+ Given lattices (Dy, &4, Ly, T4, Us, M) ... (D, Eps T

U, M, create:
tuple lattice D" = ((D, x ... x D), C, L, T, U, 1) where
L=(Ly, e Ly
T=(Ty o Th)
(ay, ..., ay) U (by, ..., b)) = (a; Uy by, ..., &, U, by)
(ag, ..., ay) N (by, ..., by) = (@, My by, ..., &, M, by)
height = height(D,) + ... + height(D,))

For all variables

» Option 2: Map from variables to single lattice

» Given lattice (D, Cy, L,, T4, Uy, M) and a set V, create:
—_ T

map latticeV —+D=(V—D,C, 1, T,u,n)
A

_L = f\\/ - 4,

T = ~ T

/\ V) /'

U o Avvx /VV\'[\/B L "”‘1[(/)
W Cotmy & Vv, W (N (v)

% ol

4|
Back to example it —d

A~z

1T o) Lo e,
/
z
1‘ | >T)
X :=Yop 2 FX::YopZ(in) = \/\[‘(H(W(y) P .',_(2)>]
- —

out

o FL T éF Lo T
¢ :J | T T
ol.l'\(‘),~\c I\ -
Ty kT ,I
T T T

Back to example

l in
Fui=vop2(in) = in [X = in(Y) 0p in(2)]

l out
where a 6\p b=
;T\ Lo
L L
T)\"L

T
T
T
T n [T

General approach to domain design

* Simple lattices:
— boolean logic lattice
— powerset lattice

— incomparable set: set of incomparable values, plus
top and bottom (eg const prop lattice)

— two point lattice: just top and bottom

» Use combinators to create more complicated
lattices
— tuple lattice constructor
— map lattice constructor

Lx>7, Y
[’Z%/C_}/

» Has to do with definition of computed info

May vs Must

» Set of x — y must-point-to pairs
— if we compute x — y, then, then during program
execution, x must pointto y
» Set of x— y may-point-to pairs

— if during program execution, it is possible for x to point
to y, then we must compute x — y

May vs must

May Must

most optimistic
(bottom) 4 Fs

most conservative Fg ﬁ

(top)

safe

merge

May vs must

Common Sub-expression Elim

* Want to compute when an expression is

May Must available in a var
. in- A
most optimistic empty set full set Domain: X _
(bottom) 7 = gl
most conservative full set empty set B Ao at @}
(top) TS ce 0(}
safe overly big overly small g) _ Ceof
. - ’LK%@[xgbp"EéG
merge o< 2 ‘ “pa }
L= N LI n
T2
1 i . A:- a+
Common Sub-expression Elim Flow functions acs eSS ™

» Want to compute when an expression is
available in a var

../>a;:0‘ Q/

in

~ F'*o-:\/\\')i"}
+ Domain: > [x =¥ op'2] x=vep2) - Lll*_\ Bi)
lOU‘ U<X~)\/0P2[
S‘:QX"EIKC‘/“‘/ECL:‘P"} **7, x;él}
0:0° a-bec xLﬂ a;mm=\t’k“ <
I b o hoo b hx=E [V e
/i d =
(
U e /\ !’A/C/ Q
Flow functions Example
12
l x = :ead()___ o
in SN — i % v:=a+b
e AN
out {X—=YopZ | X£YAX=Z} 0
—: ::+}ﬁ4v—)a4¢/
v=yo <L AN LR
: L Wy 1,
in N o
XL, Fxeoy(in) =in—{ X = *} VAo !

—{*—>..X...}lUu
{X—-E|Y—Ecin}

\A/Axu’ >t

W) X marafle) U %44
: 5 \.\)

Direction of analysis

Live Variables

+ Although constraints are not directional, flow
functions are

All flow functions we have seen so far are in the
forward direction

* In some cases, the constraints are of the form
in = F(out)

» These are called backward problems.

» Example: live variables
— compute the set of variables that may be live

» Avariable is live at a program point if it will be
used before being redefined

» Avariable is dead at a program point if it is
redefined before being used

Example: live variables

Example: live variables

» SetD =
* Lattice: (D, C, L, T,U, M) =

+ SetD=2Vas
* Lattice: (D, C, L, T, U, M) =(2ves, C, 0 ,Vars, U,

X :=Yop2 FX::YupZ(OUt) =

Example: live variables

Example: live variables

. SetD=2Vas

* Lattice: (D, C, L, T, U, M) =(2vas, C, 0 ,Vars, U,
n)

lin
Fyvop20t) = ot~ {X} U{Y, 2}

l out

=x
Gx+1 ‘y:=x+10‘

Example: live variables

How can we remove
thex := x + 1 stmt?

Revisiting assignment

lin
Fx=yopz(Out) =out—{X}U{Y, z}

out

Revisiting assignment

Theory of backward analyses

lin
Fx:=vopz(0ut) = out—{ X} U{Y, Z}

out OMJ\X}U
Kegok? @ L, 2}

» Can formalize backward analyses in two ways

» Option 1: reverse flow graph, and then run
forward problem

» Option 2: re-develop the theory, but in the
backward direction

Precision

» Going back to constant prop, in what cases
would we lose precision?

Precision

Going back to constant prop, in what cases
would we lose precision?

x =5 if (p) { i€ (o)

if (<expr>) { x := 5; x = -1;
X =6 } else } else

} x = 4; x :=1;
L oL } }

y :=x *x
where <expr> is if (p) { .Y ...
equiv to false y :=x+ 1

} else {

y :==x+ 2

Precision

» The first problem: Unreachable code
— solution: run unreachable code removal before

— the unreachable code removal analysis will do its
best, but may not remove all unreachable code

» The other two problems are path-sensitivity
issues

— Branch correlations: some paths are infeasible
— Path merging: can lead to loss of precision

MOP: meet over all paths

« Information computed at a given point is the
meet of the information computed by each path
to the program point

if (...) o

x = -1;
} else

x = 1;
}
y = x * x;
.y .

MOP

» For a path p, which is a sequence of statements
[S1, -+ Sul , define: Fy(in) = an(...Fsl(in))

* In other words: F, = E o o Iy

» Given an edge e, let paths-to(e) be the (possibly
infinite) set of paths that lead to e

Given an edge e, MOP(e) = Fp (L)
P& poihy fole)

» For us, should be called JOP (ie: join, not meet)

MOP vs. dataflow

* MORP is the “best” possible answer, given a fixed
set of flow functions
— This means that MOP C dataflow at edge in the CFG

 In general, MOP is not computable (because
there can be infinitely many paths)

— vs dataflow which is generally computable (if flow fns
are monotonic and height of lattice is finite)

* And we saw in our example, in general,
MOP = dataflow

MOP vs. dataflow

» However, it would be great if by imposing some
restrictions on the flow functions, we could
guarantee that dataflow is the same as MOP.
What would this restriction be?

Dataflow MOP
= -1; x :=1; x
. * . . * .
N/
Merge \ /

y = x * x;
LY .

x

<

MOP vs. dataflow

* However, it would be great if by imposing some
restrictions on the flow functions, we could
guarantee that dataflow is the same as MOP.
What would this restriction be?

« Distributive problems. A problem is distributive if:
Va,b.F(aub)=F(a)UF(b)

« If flow function is distributive, then MOP =
dataflow

Summary of precision

+ Dataflow is the basic algorithm

» To basic dataflow, we can add path-separation

— Get MOP, which is same as dataflow for distributive
problems

— Variety of research efforts to get closer to MOP for
non-distributive problems
» To basic dataflow, we can add path-pruning
— Get branch correlation

» To basic dataflow, can add both:
— meet over all feasible paths

