Background material

Relations

- A relation over a set S is a set R ⊆ S × S
 We write a R b for (a,b) ∈ R
- A relation R is:
 - reflexive iff
 - $\forall a \in S . a R a$
 - transitive iff

 $\forall \; a \in S, \, b \in S, \, c \in S$. a R b \wedge b R c \Rightarrow a R c

- symmetric iff
 - $\forall a, b \in S . a R b \Rightarrow b R a$
- anti-symmetric iff

 $\forall a, b, \in S . a R b \Rightarrow \neg(b R a)$

Relations

- A relation over a set S is a set R ⊆ S × S
 We write a R b for (a,b) ∈ R
- A relation R is:
 - reflexive iff
 - $\forall a \in S . a R a$
 - transitive iff

 $\forall \; a \in S, \, b \in S, \, c \in S$. a R b \wedge b R c \Rightarrow a R c

- symmetric iff

 $\forall a, b \in S . a R b \Rightarrow b R a$

- anti-symmetric iff

 $\forall a, b, \in S . a R b \Rightarrow \neg (b R a)$

 $\forall \text{ a, b,} \in S$. a R b \land b R a \Rightarrow a = b

Partial orders

- An equivalence class is a relation that is:
- A partial order is a relation that is:

Partial orders

- An equivalence class is a relation that is:
 reflexive, transitive, symmetric
- A partial order is a relation that is:
 reflexive, transitive, anti-symmetric
- A partially ordered set (a poset) is a pair (S,≤) of a set S and a partial order ≤ over the set
- Examples of posets: $(2^{S}, \subseteq), (Z, \leq), (Z, divides)$

Lub and glb

- Given a poset (S, ≤), and two elements a ∈ S and b ∈ S, then the:
 - least upper bound (lub) is an element c such that $a\leq c,\,b\leq c,\,and\;\forall\;d\in S$. (a $\leq d\wedge b\leq d)\Rightarrow c\leq d$
 - greatest lower bound (glb) is an element c such that $c\leq a,\,c\leq b,\,and~\forall~d\in S$. (d $\leq a\wedge d\leq b$) $\Rightarrow~d\leq c$

Lub and glb

- Given a poset (S, ≤), and two elements a ∈ S and b ∈ S, then the:
 - least upper bound (lub) is an element c such that $a\leq c,\,b\leq c,\,and\;\forall\;d\in S$. (a $\leq d\wedge b\leq d)\Rightarrow c\leq d$
 - greatest lower bound (glb) is an element c such that $c\leq a,\,c\leq b,\,and~\forall~d\in S$. (d $\leq a\wedge d\leq b$) $\Rightarrow~d\leq c$
- lub and glb don't always exists:

Lub and glb

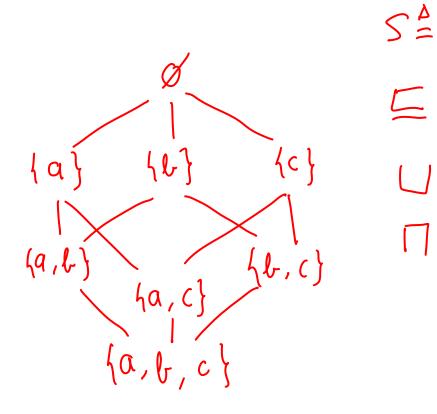
- Given a poset (S, ≤), and two elements a ∈ S and b ∈ S, then the:
 - least upper bound (lub) is an element c such that $a\leq c,\,b\leq c,\,and~\forall~d\in S$. (a $\leq d\wedge b\leq d)\Rightarrow c\leq d$
 - greatest lower bound (glb) is an element c such that $c\leq a,\,c\leq b,\,and~\forall~d\in S$. (d $\leq a\wedge d\leq b$) $\Rightarrow~d\leq c$
- lub and glb don't always exists:

glbqb&c?

Lattices

- A lattice is a tuple (S, \subseteq , \perp , \top , \sqcup , \sqcap) such that:
 - (S, \sqsubseteq) is a poset
 - $\forall a \in S \perp \sqsubseteq a$
 - $\forall a \in S . a \sqsubseteq \top$
 - Every two elements from S have a lub and a glb
 - \sqcup is the least upper bound operator, called a join
 - \Box is the greatest lower bound operator, called a meet

• Powerset lattice



5

 Δ

• Powerset lattice

 $\{c\}$ 467 la (a, b) $\{b, c\}$ ha, c{a, b,



