Background material

Relations

- A relation over a set S is a set $R \subseteq S \times S$ - We write a R b for (a,b) $\in R$
- · A relation R is:
 - reflexive iff
 - $\forall \ a \in S \ . \ a \ R \ a \\ \ transitive \ iff$
 - $\forall a \in S, b \in S, c \in S . a R b \land b R c \Rightarrow a R c$
 - symmetric iff

$$\forall$$
 a, b \in S . a R b \Rightarrow b R a

```
- anti-symmetric iff
```

```
\forall a, b, \in S . a R b \Rightarrow \neg(b R a)
```

Relations

- A relation over a set S is a set R ⊆ S × S
 We write a R b for (a,b) ∈ R
- A relation R is:
 - reflexive iff
 - $\forall a \in S . a R a$
 - transitive iff
 - $\forall a \in S, b \in S, c \in S \text{ . } a \text{ R } b \land b \text{ R } c \Rightarrow a \text{ R } c$
 - symmetric iff $\forall \text{ a, } b \in S \text{ . a } R \text{ } b \Rightarrow b \text{ } R \text{ } a$
 - anti-symmetric iff
 - $\forall a, b, \in S . a R b \Rightarrow \neg (b R a)$
 - \forall a, b, \in S . a R b \land b R a \Rightarrow a = b

Partial orders

- · An equivalence class is a relation that is:
- · A partial order is a relation that is:

Partial orders

- An equivalence class is a relation that is: – reflexive, transitive, symmetric
- A partial order is a relation that is: – reflexive, transitive, anti-symmetric
- A partially ordered set (a poset) is a pair (S, \leq) of a set S and a partial order \leq over the set
- Examples of posets: (2^S, \subseteq), (Z, \leq), (Z, divides)

Lub and glb

- Given a poset (S, \leq), and two elements $a \in S$ and $b \in S,$ then the:
 - least upper bound (lub) is an element c such that $a\leq c,\,b\leq c,$ and $\forall\;d\in S$. ($a\leq d\wedge b\leq d)\Rightarrow c\leq d$
 - greatest lower bound (glb) is an element c such that
 - $c \leq a, c \leq b, and \forall d \in S$. $(d \leq a \land d \leq b) \Rightarrow d \leq c$

Lub and glb

- Given a poset (S, \leq), and two elements $a \in S$ and $b \in S,$ then the:
 - least upper bound (lub) is an element c such that $a\leq c,\,b\leq c,$ and $\forall\;d\in S$. ($a\leq d\wedge b\leq d)\Rightarrow c\leq d$
 - greatest lower bound (glb) is an element c such that $c\leq a,\,c\leq b,\,and\;\forall\;d\in S$. (d $\leq a\wedge d\leq b)\Rightarrow d\leq c$
- · lub and glb don't always exists:

Lub and glb

- Given a poset (S, \leq), and two elements $a \in S$ and $b \in S,$ then the:
 - least upper bound (lub) is an element c such that $a \le c, b \le c, and \forall d \in S . (a \le d \land b \le d) \Rightarrow c \le d$
 - greatest lower bound (glb) is an element c such that $c\leq a,\,c\leq b,$ and $\forall \; d\in S$. ($d\leq a\wedge d\leq b) \Rightarrow d\leq c$

glb of b & c?

• lub and glb don't always exists:

Lattices

- A lattice is a tuple (S, \sqsubseteq , \bot , \top , \sqcup , \sqcap) such that: - (S, \sqsubseteq) is a poset
 - \forall a ∈ S . ⊥ ⊑ a
 - $\forall a \in S . a \sqsubseteq \top$
 - Every two elements from S have a lub and a glb
 - \sqcup is the least upper bound operator, called a join
 - $\ \sqcap$ is the greatest lower bound operator, called a meet

