Background material

Relations

- A relation over a set S is a set $R \subseteq S \times S$
 - We write a R b for (a,b) $\in R$
- A relation R is:
 - reflexive iff
 - $\forall \ a \in S . \ a \ R \ a$
 - transitive iff
 - $\forall \ a \in S, b \in S, c \in S \ . \ a \ R \ b \wedge b \ R \ c \Rightarrow a \ R \ c$
 - symmetric iff
 - \forall a, b \in S . a R b \Rightarrow b R a
 - anti-symmetric iff
 - \forall a, b, \in S . a R b $\Rightarrow \neg$ (b R a)

Relations

- A relation over a set S is a set R \subseteq S \times S
 - We write a R b for (a,b) \in R
- A relation R is:
 - reflexive iff
 - $\forall a \in S . a R a$
 - transitive iff
 - $\forall \ a \in S, b \in S, c \in S \ . \ a \ R \ b \wedge b \ R \ c \Rightarrow a \ R \ c$
 - symmetric iff
 - \forall a, b \in S . a R b \Rightarrow b R a
 - anti-symmetric iff
 - \forall a, b, \in S . a R b $\Rightarrow \neg$ (b R a)
 - \forall a, b, \in S . a R b \land b R a \Rightarrow a = b

Partial orders

- An equivalence class is a relation that is:
- · A partial order is a relation that is:

Partial orders

- An equivalence class is a relation that is:
 - reflexive, transitive, symmetric
- A partial order is a relation that is:
 - reflexive, transitive, anti-symmetric
- A partially ordered set (a poset) is a pair (S,≤) of a set S and a partial order ≤ over the set
- Examples of posets: $(2^s, \subseteq)$, (Z, \le) , (Z, divides)

P(S)

Lub and glb

- Given a poset (S, ≤), and two elements a ∈ S and b ∈ S, then the:
 - least upper bound (lub) is an element c such that $\underline{a\leq c,\,b\leq c,\,and}~\forall~d\in S$. (a $\leq d\wedge b\leq d$) $\Rightarrow c\leq d$
 - greatest lower bound (glb) is an element c such that $c \le a, c \le b$, and $\forall d \in S$. ($d \le a \land d \le b$) $\Rightarrow d \le c$

Lub and glb

- Given a poset (S, ≤), and two elements a ∈ S and b ∈ S, then the:
 - least upper bound (lub) is an element c such that $a \le c, b \le c,$ and $\forall \ d \in S$. $(a \le d \land b \le d) \Rightarrow c \le d$
 - greatest lower bound (glb) is an element c such that $c\leq a,\,c\leq b,$ and $\forall\;d\in S$. (d $\leq a\wedge d\leq b)\Rightarrow d\leq c$
- · lub and glb don't always exists:

Lub and glb

- Given a poset (S, ≤), and two elements a ∈ S and b ∈ S, then the:
 - least upper bound (lub) is an element c such that $a \le c, b \le c,$ and $\forall \ d \in S$. $(a \le d \land b \le d) \Rightarrow c \le d$
 - greatest lower bound (glb) is an element c such that $c\leq a,\,c\leq b,$ and $\forall\;d\in S$. (d $\leq a\wedge d\leq b)\Rightarrow d\leq c$
- · lub and glb don't always exists:

Lattices

- A lattice is a tuple (S, \sqsubseteq , \bot , \top , \sqcup , \sqcap) such that:
 - (S, \sqsubseteq) is a poset
 - $\forall a \in S . \bot \sqsubseteq a$
 - $\forall a \in S . a \sqsubseteq \top$
 - Every two elements from S have a lub and a glb
 - ⊔ is the least upper bound operator, called a join
 - ¬ □ is the greatest lower bound operator, called a meet

Examples of lattices

· Powerset lattice

Examples of lattices

· Powerset lattice

Examples of lattices

· Booleans expressions

Examples of lattices

· Booleans expressions

Examples of lattices

· Booleans expressions

Examples of lattices

· Booleans expressions