Background material #### Relations - A relation over a set S is a set $R \subseteq S \times S$ - We write a R b for (a,b) $\in R$ - A relation R is: - reflexive iff - $\forall \ a \in S . \ a \ R \ a$ - transitive iff - $\forall \ a \in S, b \in S, c \in S \ . \ a \ R \ b \wedge b \ R \ c \Rightarrow a \ R \ c$ - symmetric iff - \forall a, b \in S . a R b \Rightarrow b R a - anti-symmetric iff - \forall a, b, \in S . a R b $\Rightarrow \neg$ (b R a) #### Relations - A relation over a set S is a set R \subseteq S \times S - We write a R b for (a,b) \in R - A relation R is: - reflexive iff - $\forall a \in S . a R a$ - transitive iff - $\forall \ a \in S, b \in S, c \in S \ . \ a \ R \ b \wedge b \ R \ c \Rightarrow a \ R \ c$ - symmetric iff - \forall a, b \in S . a R b \Rightarrow b R a - anti-symmetric iff - \forall a, b, \in S . a R b $\Rightarrow \neg$ (b R a) - \forall a, b, \in S . a R b \land b R a \Rightarrow a = b ### Partial orders - An equivalence class is a relation that is: - · A partial order is a relation that is: #### Partial orders - An equivalence class is a relation that is: - reflexive, transitive, symmetric - A partial order is a relation that is: - reflexive, transitive, anti-symmetric - A partially ordered set (a poset) is a pair (S,≤) of a set S and a partial order ≤ over the set - Examples of posets: $(2^s, \subseteq)$, (Z, \le) , (Z, divides) P(S) ## Lub and glb - Given a poset (S, ≤), and two elements a ∈ S and b ∈ S, then the: - least upper bound (lub) is an element c such that $\underline{a\leq c,\,b\leq c,\,and}~\forall~d\in S$. (a $\leq d\wedge b\leq d$) $\Rightarrow c\leq d$ - greatest lower bound (glb) is an element c such that $c \le a, c \le b$, and $\forall d \in S$. ($d \le a \land d \le b$) $\Rightarrow d \le c$ ## Lub and glb - Given a poset (S, ≤), and two elements a ∈ S and b ∈ S, then the: - least upper bound (lub) is an element c such that $a \le c, b \le c,$ and $\forall \ d \in S$. $(a \le d \land b \le d) \Rightarrow c \le d$ - greatest lower bound (glb) is an element c such that $c\leq a,\,c\leq b,$ and $\forall\;d\in S$. (d $\leq a\wedge d\leq b)\Rightarrow d\leq c$ - · lub and glb don't always exists: ### Lub and glb - Given a poset (S, ≤), and two elements a ∈ S and b ∈ S, then the: - least upper bound (lub) is an element c such that $a \le c, b \le c,$ and $\forall \ d \in S$. $(a \le d \land b \le d) \Rightarrow c \le d$ - greatest lower bound (glb) is an element c such that $c\leq a,\,c\leq b,$ and $\forall\;d\in S$. (d $\leq a\wedge d\leq b)\Rightarrow d\leq c$ - · lub and glb don't always exists: ### Lattices - A lattice is a tuple (S, \sqsubseteq , \bot , \top , \sqcup , \sqcap) such that: - (S, \sqsubseteq) is a poset - $\forall a \in S . \bot \sqsubseteq a$ - $\forall a \in S . a \sqsubseteq \top$ - Every two elements from S have a lub and a glb - ⊔ is the least upper bound operator, called a join - ¬ □ is the greatest lower bound operator, called a meet ## **Examples of lattices** · Powerset lattice ## Examples of lattices · Powerset lattice ## Examples of lattices · Booleans expressions # **Examples of lattices** · Booleans expressions # **Examples of lattices** · Booleans expressions # **Examples of lattices** · Booleans expressions