Dataflow analysis

Dataflow analysis: what is it?

* A common framework for expressing algorithms
that compute information about a program

* Why is such a framework useful?

Dataflow analysis: what is it?

» A common framework for expressing algorithms
that compute information about a program

* Why is such a framework useful?

» Provides a common language, which makes it
easier to:
— communicate your analysis to others
— compare analyses
— adapt techniques from one analysis to another
— reuse implementations (eg: dataflow analysis

Control Flow Graphs

» For now, we will use a Control Flow Graph
representation of programs
— each statement becomes a node
— edges between nodes represent control flow

 Later we will see other program representations
— variations on the CFG (eg CFG with basic blocks)
— other graph based representations

frameworks)
Example CFG An example DFA: reaching definitions
s + For each use of a variable, determine what
y i= assignments could have set the value being
e read from the variable
S + Information useful for:
) v ‘ x x -] — performing constant and copy prop
else { . \x = it \ — detecting references to undefined variables

— presenting “def/use chains” to the programmer
— building other representations, like the DFG

* Let’s try this out on an example

Visual sugar

............................. . 1: x :=
2: y :=
3: y :=
4: p = ...
‘.. x ‘ e X e X
¥ 5: x := . 6: x :=
‘x =+. ‘ y 7: *p :=
[| \ /
B S
LY
8: y := .

vy &
29 e
 / !
o o
R 79)
3 /
i

.<
W

Safety

* When is computed info safe?

» Recall intended use of this info:
— performing constant and copy prop
— detecting references to undefined variables
— presenting “def/use chains” to the programmer
— building other representations, like the DFG

» Safety:
— can have more bindings than the “true” answer, but
can’t miss any

Reaching definitions generalized

» DFA framework geared to computing information
at each program point (edge) in the CFG

— So generalize problem by stating what should be
computed at each program point

» For each program point in the CFG, compute the
set of definitions (statements) that may reach
that point

» Notion of safety remains the same

Reaching definitions generalized

» Computed information at a program point is a
set of var — stmt bindings
—eg: {X—=S;,X—=>S,y—s3}

* How do we get the previous info we wanted?

— if avar x is used in a stmt whose incoming info is in,
then:

Reaching definitions generalized

» Computed information at a program point is a
set of var — stmt bindings
—eg: {X—S;,X—=>S,Y—>S3}

* How do we get the previous info we wanted?
— ifavar x is used in a stmt whose incoming info is in,
then: {s|(x »s) ein}
» This is a common pattern
— generalize the problem to define what information
should be computed at each program point
— use the computed information at the program points
to get the original info we wanted

<.
‘ ll
3
d
AN

S/EEE

oKX
won

o
»

o

< N\
Lol W N R
*

o

[}

[Q't-r 4#/&&

PR

e (x>, Y>2

KooX

]
x
d
N
b
<

=

]

A
PSS
¥
W
X
o
/®'H AN
® Pl b}‘wNH

6: x = ..

70 4p o= (TR0 3 0
{X%, Ko7y 3,
V> 7/?—74/pﬁ?j

Lox LT Kﬂ;/)(*{,)(ﬁZ
e Y 7»\3{ \/,7;/
y = ... Pk)é/,ﬂﬁ?.

Using constraints to formalize DFA

* Now that we’'ve gone through some examples,
let’s try to precisely express the algorithms for
computing dataflow information

* We'll model DFA as solving a system of
constraints

» Each node in the CFG will impose constraints
relating information at predecessor and
successor points

Solution to constraints is result of analysis

Constraints for reaching definitions

M:

out 4,,\/\ ~ é X~ *}
L V=
ol -

l out

EY b

Constraints for reaching definitions

out=in—{X—>8|Sestms}uU{X—S}

1) « Using may-point-to information:

n

S: *p .= .. out=inU{X — S| X € may-point-to(P) }
1 out + Using must-point-to aswell:

out=in—{X — S| X € must-point-to(P) A
S’ € stmts }
U{X — S| X € may-point-to(P) }

Constraints for reaching definitions

Constraints for reaching definitions

lin out[0]=inA
S: if (...) out[1]=in
out[0] out[1] more generally:Vi.out[i]=in

out=in[0] Uin[1]

more generally: out=U;in [i]

Flow functions

* The constraint for a statement kind s often have
the form: out = F(in)

F is called a flow function
— other names for it: dataflow function, transfer function

» Given information in before statement s, F(in)
returns information after statement s

» Other formulations have the statement s as an
explicit parameter to F: given a statement s and
some information in, F(s,in) returns the outgoing
information after statement s

Flow functions, some issues

« Issue: what does one do when there are multiple
input edges to a node?

* Issue: what does one do when there are multiple
outgoing edges to a node?

Flow functions, some issues

* Issue: what does one do when there are multiple
input edges to a node?

— the flow functions takes as input a tuple of values,
one value for each incoming edge

* Issue: what does one do when there are multiple
outgoing edges to a node?

— the flow function returns a tuple of values, one value
for each outgoing edge

— can also have one flow function per outgoing edge

Flow functions

» Flow functions are a central component of a
dataflow analysis

» They state constraints on the information flowing
into and out of a statement

 This version of the flow functions is local
— it applies to a particular statement kind
— we'll see global flow functions shortly...

° dy = Fy(do)

%A

— given information flowing in to a node, can determine
using the flow function the info flow out of the node

Summary of flow functions Back to example |} * 2 L
2:y := d, U2 = Fy(dy)
3:y:= d3 = F(dy)

» Flow functions: Given information in before 4: p := ngdA:Fd(dS)
statement s, F¢(in) returns information after do = F(dy) CAE(.L) ds = Fe(dy)
statement s d;/ s’

. v

» Flow functions are a central component of a dyo = Fy(ds) I PR Cx . d/ds=Fg(d5)

dataflow analysis dy; = Fy(dyo) dm 5: x i= ... 6: de‘/d‘/:Fh(de)
11 Y .
. . . . 4,2 = F(du) e ¥ T dy =F(d)

» They state constraints on the information flowing p L
into and out of a statement “>\ °

dyi3 = Fry(dyz, dg)
How to find I oy L
solutions for d;? ey 1 shs = Fo(du)
8y := .. di: S = Fo(dao)
IS d,
. . . . - ° d,=F,d
How to find solutions for d;? First problem |} = = @ o
y = .
3:y = ds = F(dy)

* This is a forward problem 4: p := gj dy = Fy(dy)

do = Fi(dy) 1.0 ds = Fe(dy)
4 /

* To solve, simply propagate information forward
through the control flow graph, using the flow

dyo = Fi(do)

d .. .
dy =Fdio) ° |5: x := ...
dy

ds = Fy(ds)

d,
dj d7 = Fy(de)

functions 412 = Fi(dh) A 4= F(d)
* What are the problems with this approach? dl?\‘
merge dy3 = Fry(dys, dg)
What about the 7 i3 g, = Fo(dy)
A ; .. X d“ 1. _ n\H13,
incoming C ¥ e | g dis= R
information? 8:y = .o | g7 G=Fd)
First problem Entry node
* What about the incoming information?
— d, is not constrained
— so where do we start? out={X — S| X € Formals }
l out

* Need to constrain d,

» Two options:
— explicitly state entry information
— have an entry node whose flow function sets the
information on entry (doesn’t matter if entry node has
an incoming edge, its flow function ignores any input)

do
1: x := d; = Fy(do)

d.
Second problem |7 * b ar
3y := 4, G=Fd)
4 P"'= i d, d, = Fy(da)
do = F(da) ifC-0) ds = Fe(dy)

dio = Fi(ds) k. do = Fo(ds)
dyy = Fy(dyo) gm 5: x = ... Ss d7 = Fi(de)
11 7
di, = F(dy) ¥ ds = F(dy)
dl\
. dy3 = Fro(dy, d
Which order to merge 4 o p ((d B)
o x d 14 = FnlUss,
process nodes in? . o dis = Fo(dia)
8: y := ... di: dig= Fp(d15)

Second problem

» Which order to process nodes in?

» Sort nodes in topological order

— each node appears in the order after all of its
predecessors

» Just run the flow functions for each of the nodes
in the topological order

* What's the problem now?

Second problem, prime

* When there are loops, there is no topological
order!

* Whatto do?

* Let’s try and see what we can do

2 xat
—atys
L Xag, Y

/ \

TR KX

\hwm»—-

= L‘,(—\‘ X6

- XY 759
\/_ 7

R =36,Y43, P06 0 Y 1=

R 2 “a
&{ x4, #3%,
T, T3,

o P-4, 010

/g)(vvv}
. Ak, V177

TR X

T 4‘<~ﬁf, V-5 %%

1
2
3 .
4:
N\ b=l 04}
oty vt pod) 5:“”/“‘,“;
s)

%, P,z
X0, Y53 0047 "

X673, ps4)

Worklist algorithm

« Initialize all d; to the empty set
» Store all nodes onto a worklist

» while worklist is not empty:
— remove node n from worklist
— apply flow function for node n

— update the appropriate d;, and add nodes whose
inputs have changed back onto worklist

Worklist algorithm

let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do \ ,\\\hl\

for each node n do

. MM
worklist.add(n) A =9, \\\Q)
. | L5 il
while (worklist.empty.not) d&W

let n := worklist.remove_any;
let info_in := m(n.incoming_edges) ;
let info_out := F(n, info_in);

_~for i :—:“_g .. info out;lfnffh-l
if .outgoing edges[i]]) #linfo_out[i])
m(n.outgoing edges[i]) :=®
worklist.add(n.outgoing edges[i] .dst);

Issues with worklist algorithm

Two issues with worklist algorithm

» Ordering

— In what order should the original nodes be added to
the worklist?

— What order should nodes be removed from the
worklist?

» Does this algorithm terminate?

Order of nodes

» Topological order assuming back-edges have
been removed

* Reverse depth-first post-order

» Use an ordered worklist

nm . nn
3

TR X

~
— N o~
w
*

..Ii:
< o
,?Jd/iii\fyyf

Termination

* Why is termination important?

» Can we stop the algorithm in the middle and just
say we'’re done...

* No: we need to run it to completion, otherwise
the results are not safe...

Termination

» Assuming we’re doing reaching defs, let's try to
guarantee that the worklist loop terminates,
regardless of what the flow function F does

while (worklist.empty.not) do

let n := worklist.remove_ any;
let info_in := m(n.incoming_edges) ;
let info_out := F(n, info_in);

for i := 0 .. info_out.length-1 do
if (m(n.outgoing edges[i]) # info out[i])
m(n.outgoing edges[i]) := 1 —out[i];
worklist.add(n.outgoing_edges[i] .dst);

S‘X\’_r.l

—
L &
Termination To o

» Assuming we’re doing reaching defs, let’s try to
guarantee that the worklist loop terminates,
regardless of what the flow function F does

while (worklist.empty.not) do
let n := worklist.remove_ any;
let info_in := m(n.incoming_edges) ;
let info_out := F(n, info_in);
for i := 0 .. info_out.length-1 do
let new_info := m(n.outgoing edges[i]) U
info_out[i];
if (m(n.outgoing edges[i])(# mew_info])
m(n.outgoing edges[i]) := new_info;
worklist.add(n.outgoing_edges[i].dst);

Structure of the domain

» We’re using the structure of the domain outside
of the flow functions

* In general, it's useful to have a framework that
formalizes this structure

* We will use lattices

