
1

Advanced Compiler Design

CSE 231

Instructor: Sorin Lerner

Let’s look at a compiler

if (…) {

x := …;

} else {

y := …;

}

…;

ExecCompilerParser
Code

Gen

Compiler

Optimizer

Parser
Code

Gen

Compiler

Parser
Code

Gen

Compiler

Let’s look at a compiler

Optimizer

Advanced Optimizer Design

CSE 231

Instructor: Sorin Lerner

What does an optimizer do?

1.Compute information about a program

2.Use that information to perform program 

transformations 
(with the goal of improving some metric, e.g. performance)

Parser
Code

Gen

Compiler

Optimizer

What do these tools have in common?

• Bug finders

• Program verifiers

• Code refactoring tools

• Garbage collectors

• Runtime monitoring system

• And… optimizers



2

What do these tools have in common?

• Bug finders

• Program verifiers

• Code refactoring tools

• Garbage collectors

• Runtime monitoring system

• And… optimizers

They all analyze and transform programs

We will learn about the techniques underlying all 

these tools

Program Analyses, Transformations,

and Applications

CSE 231

Instructor: Sorin Lerner

Course goals

• Understand basic techniques

– cornerstone of a variety of program analysis tools

– useful no matter what your future path

• Get a feel for compiler research/implementation

– useful for research-oriented students

– useful for implementation-oriented students

Course topics

• Representing programs 

• Analyzing and transforming programs

• Applications of these techniques

Course topics (more details)

• Representations

– Abstract Syntax Tree

– Control Flow Graph

– Dataflow Graph

– Static Single Assignment

– Control Dependence Graph

– Program Dependence Graph

– Call Graph

Course topics (more details)

• Analysis/Transformation Algorithms

– Dataflow Analysis

– Interprocedural analysis 

– Pointer analysis

– Rule-based analyses and transformations

– Constraint-based analysis



3

Course topics (more details)

• Applications

– Scalar optimizations

– Loop optimizations

– Object oriented optimizations

– Program verification

– Bug finding

Course pre-requisites

• No compilers background necessary

• No familiarity with lattices

– I will review what is necessary in class

• Familiarity with functional/OO programming

– Optimization techniques for these kinds of languages

• Familiarity with C/C++

– Project will be in C++

• Standard ugrad cs curriculum likely enough

– Talk to me if you’re concerned

Course work

• In-class midterm (30%)

– Date posted on web site

• In-class final (30%)

– Date published by official calendar

• Course project (35%)

• Class participation (5%)

Course project

• Goal of the project

– Get some hands on experience with compilers

– Two options, most will do option 1 

• Option 1: LLVM project

– Implement some analyses in LLVM, three milestones

– Hand in your code and it’s auto-graded

• Option 2: Research (by instructor approval)

– Pick some interesting idea, and try it out

– Proposals due at the beginning of the second week

– Can leverage your existing research

LLVM Project

• M1: Simple instrumentation

• M2: Analysis framework

• M3: Implement Analyses in framework

• You will extend LLVM. This will require C++

– If you don’t know C++, you will learn

– If you don’t think you can learn C++, think about 

dropping this class?

• To be done alone

Research Project

• Requires instructor approval

– You need to come up with your own idea…

– … by the end of week 1

– Most students doing this will be PhD students

– It’s ok to leverage or overlap with existing research

• I envision at most 10 people doing this



4

Readings

• Paper readings throughout the quarter

• Seminal papers and state of the art

• Gives you historical perspective

• Shows you lineage from idea to practice

Administrative info

• Class web page is up

– https://ucsd-pl.github.io/cse231/

– (or Google “Sorin Lerner”, follow “Teaching Now”)

– Will post lectures, readings, project info, etc.

• Piazza link on web page

– Use for questions, answers

– Especially LLVM/project Q&A 

Academic Integrity

• Governed by Policy on Integrity of Scholarship 
(http://senate.ucsd.edu/Operating-Procedures/Senate-

Manual/Appendices/2)

• Allegations are handled by Academic Integrity 

Office (https://students.ucsd.edu/academics/academic-integrity)

• Course penalty for any cheating in 231 will be a 

failing grade for the entire class

• Cheaters may be subject to additional 

administrative sanctions

Questions?

Program Analyzer Issues (discuss)

Program

Analyzer
Input Output

Program Analyzer Issues (discuss)

Program

Analyzer
Input Output

http://cseweb.ucsd.edu/classes/fa15/cse231-a/


5

Program Analyzer Issues (discuss)

Program

Analyzer
Input Output

Input issues

• Input is a program, but…

• What language is the program written in?

– imperative vs. functional vs. object-oriented? maybe 

even declarative?

– what pointer model does the language use?

– reflection, exceptions, continuations?

– type system trusted or not?

– one often analyzes an intermediate language... how 

does one design such a language?

Instructor’s discussion notes

Program

Analyzer
Input Output

Input issues

• How much of the program do we see?

– all?

– one file at a time?

– one library at a time?

– reflection…

• Any additional inputs?

– any human help?

– profile info?

Instructor’s discussion notes

Program

Analyzer
Input Output

Analysis issues

• Analysis/compilation model
– Separate compilation/analysis

• quick, but no opportunities for interprocedural analysis

– Link-time

• allows interprocedural and whole program analysis

• but what about shared precompiled libraries?

• and what about compile-time?

– Run-time

• best optimization/analysis potential (can even use run-time state as 
additional information)

• can handle run-time extensions to the program

• but severe pressure to limit compilation time

– Selective run-time compilation

• choose what part of compilation to delay until run-time

• can balance compile-time/benefit tradeoffs

Instructor’s discussion notes

Program

Analyzer
Input Output

Analysis issues

• Does running-time matter?

– for use in IDE? 

– or in overnight compile?

Instructor’s discussion notes

Program

Analyzer
Input Output

Output issues

• Form of output varies widely, depending on 
analysis
– alias information

– constantness information

– loop terminates/does not terminate

• Correctness of analysis results
– depends on what the results are used for

– are we attempting to design algorithms for solving 
undecidable problems?

– notion of approximation

– statistical output

Instructor’s discussion notes

Program

Analyzer
Input Output



6

Program Transformation Issues (discuss)

Program

Transformer
Input Output

Input issues

• A program, and …

• Program analysis results

• Profile info?

• Environment: # of CPUs, # of cores/CPU, cache 

size, etc.

• Anything else?

Instructor’s discussion notes

Program

Transformer
Input Output

Transformation issues

• What is profitable?

• What order to perform transformations?

• What happens to the program representation? 

• What happens to the computed information? For 

example alias information? Need to recompute?

Instructor’s discussion notes

Program

Transformer
Input Output

Output issues

• Output in same IL as input?

• Should the output program behave the same 

way as the input program?

Instructor’s discussion notes

Program

Transformer
Input Output


