
CSE130/230 - WEEK 5 DI
Interpreters, PA4, and beyond

David Justo

The Plan for Today
1. Interpreters

2. PA 4 Overview

3. PA4 Concepts

The Plan for Today
1. Interpreters

2. PA 4 Overview

3. PA4 Concepts

a. Environments

b. Closures

c. Apps

i. Let, Letrec

d. Native ops

Obligatory Halloween meme

Interpreters
~Of the realms beyond~

What is an Interpreter?
An interpreter is a program that executes other
programs (it can interpret / understand source
code) without the need of compiling them.

What is an Interpreter?
An interpreter is a program that executes other
programs (it can interpret / understand source
code) without the need of compiling them.

Usually, it consists of an evaluation loop that
recursively resolves the arguments to an
operator from expressions to values.

What is an Interpreter?
An interpreter is a program that executes other
programs (it can interpret / understand source
code) without the need of compiling them.

Usually, it consists of an evaluation loop that
recursively resolves the arguments to an
operator from expressions to values.

What is an Interpreter?
An interpreter is a program that executes other
programs (it can interpret / understand source
code) without the need of compiling them.

Usually, it consists of an evaluation loop that
recursively resolves the arguments to an
operator from expressions to values.

The expression you’re currently evaluating

What is an Interpreter?
An interpreter is a program that executes other
programs (it can interpret / understand source
code) without the need of compiling them.

Usually, it consists of an evaluation loop that
recursively resolves the arguments to an
operator from expressions to values.

The environment: array of tuples of the form (“var”, “value”)

The expression you’re currently evaluating

How to implement an interpreter?

How to implement an interpreter?

Pattern match `e` with the data constructors and handle each case;;

Sometimes add a new variable to `env`

Also check that types are correct: cannot do 4 + “Burger”, for example

The Big Picture
source
code

Lexer

Parser

Interpreter

simple text

tokens

ASTs

The Big Picture
source
code

Lexer

Parser

Interpreter

simple text

tokens

ASTs

ONLY WORRY ABOUT

Environments
~Of the undead~

Let’s run some code in our heads!
let a = 1 in

 let b = 2 in

 let a = a + 1 in

 a + b

Let’s run some code in our heads!
let a = 1 in

 let b = 2 in

 let a = a + 1 in

 a + b What’s the value of the final expression

Let’s run some code in our heads!
let a = 1 in

 let b = 2 in

 let a = a + 1 in

 a + b // 4

Let’s run some code in our heads!
let a = 1 in

 let b = 2 in

 let a = a + 1 in

 a + b // 4

a and a are different!

How is the environment filled?
let a = 1 in

 let b = 2 in

 let a = a + 1 in

 a + b // 4

(a,1)

Environment

How is the environment filled?
let a = 1 in

 let b = 2 in

 let a = a + 1 in

 a + b // 4

(b,2) (a,1)

Environment

How is the environment filled?
let a = 1 in

 let b = 2 in

 let a = a + 1 in

 a + b // 4

(a, 2) (b,2) (a,1)

Environment

How is the environment filled?
let a = 1 in

 let b = 2 in

 let a = a + 1 in

 a + b // 4

(a, 2) (b,2) (a,1)

Environment

How is the environment filled?
let a = 1 in

 let b = 2 in

 let a = a + 1 in

 a + b // 4

(a, 2) (b,2) (a,1)

Environment

ListAssoc finds the left-most definition of
any variable in the environment. So a + b
will resolve to 2 + 2 = 4 instead of 1 + 2 = 3

Closures
From the beyond

Closures
Construction: Closure(env, name, argument, body)

Closures
Construction: Closure(env, name, argument, body)

Either: None or Some ‘name’

Closures
Construction: Closure(env, name, argument, body)

Either: None or Some ‘name’

This is the
representation of a
function in your
environment

When is a closure created?
let a = 1 in

 let b = 2 in

 let foo = fun x -> x + 1

 in x + b + a + 1

When is a closure created?
let a = 1 in

 let b = 2 in

 let foo = fun x -> x + 1

 in x + b + a + 1

Environment

When is a closure created?
let a = 1 in

 let b = 2 in

 let foo = fun x -> x + 1

 in x + b + a + 1

(a,1)

Environment

When is a closure created?
let a = 1 in

 let b = 2 in

 let foo = fun x -> x + 1

 in x + b + a + 1

(b,2),(a,1)

Environment

When is a closure created?
let a = 1 in

 let b = 2 in

 let foo = fun x -> x + 1

 in x + b + a + 1

(foo, Closure([(b,2), (a,1)], None, x, x+1),(b,2),(a,1)

Environment

When is a closure created?
let a = 1 in

 let b = 2 in

 let foo = fun x -> x + 1

 in x+ b + a + 1

(foo, Closure([(b,2),(a,1)], None, x, x+1),(b,2),(a,1)

Environment

The name is None.
When would it need a name?

App
~Of dark magic~

How do you call a function?
let a = 1 in

 let b = 2 in

 let foo = fun x -> x + a

 in foo 5

Environment

How do you call a function?
let a = 1 in

 let b = 2 in

 let foo = fun x -> x + a

 in foo 5

(a,1)

Environment

How do you call a function?
let a = 1 in

 let b = 2 in

 let foo = fun x -> x + a

 in foo 5

(b,2), (a,1)

Environment

How do you call a function?
let a = 1 in

 let b = 2 in

 let foo = fun x -> x + a

 in foo 5

(Closure([(b,2),(a,1)], None, x, x + a)),(b,2),(a,1)

Environment

How do you call a function?
let a = 1 in

 let b = 2 in

 let foo = fun x -> x + a

 in foo 5

(Closure([(b,2),(a,1)], None, x, x + a)),(b,2),(a,1)

Environment

How do you call a function?
let a = 1 in

 let b = 2 in

 let foo = fun x -> x + a

 in foo 5

(Closure([(b,2),(a,1)], None, x, x + a)),(b,2),(a,1)

Environment

Assuming we’re in eval….

How do you call a function?
let a = 1 in

 let b = 2 in

 let foo = fun x -> x + a

 in foo 5

(Closure([(b,2),(a,1)], None, x, x + a)),(b,2),(a,1)

Environment

Assuming we’re in eval….

1. We take the environment
inside the closure

[(b,2), (a,1)]

How do you call a function?
let a = 1 in

 let b = 2 in

 let foo = fun x -> x + a

 in foo 5

(Closure([(b,2),(a,1)], None, x, x + a)),(b,2),(a,1)

Environment

Assuming we’re in eval….

1. We take the environment
inside the closure

2. Then you bind the parameter
to the passed value

[(b,2), (a,1)]

(x,5)

How do you call a function?
let a = 1 in

 let b = 2 in

 let foo = fun x -> x + a

 in foo 5

(Closure([(b,2),(a,1)], None, x, x + a)),(b,2),(a,1)

Environment

Assuming we’re in eval….

1. We take the environment
inside the closure

2. Then you bind the parameter
to the passed value

3. Then you pass the new bind
to the environment

[(b,2), (a,1)]

(x,5)

[(x,5),(b,2),(a,1)]

How do you call a function?
let a = 1 in

 let b = 2 in

 let foo = fun x -> x + a

 in foo 5

(Closure([(b,2),(a,1)], None, x, x + a)),(b,2),(a,1)

Environment

Assuming we’re in eval….

1. We take the environment
inside the closure

2. Then you bind the parameter
to the passed value

3. Then you pass the new bind
to the environment

4. And you evaluate the body in
the closure with the new
environment

[(b,2), (a,1)]

(x,5)

[(x,5),(b,2),(a,1)]

eval
[(x,5),(b,2),(a,1)]
(x+a)

Whattabout Letrec
Now what happens when you have a recursive function?

Whattabout Letrec
Now what happens when you have a recursive function?

Whoever gets this right gets a TOBLERONE

Whattabout Letrec

Simple.

Whattabout Letrec

If letrec creates a function, make sure that
function has a name!

letrec x = e1 in e2

Whattabout Letrec

If letrec creates a function, make sure that
function has a name!

letrec x = e1 in e2

Name is ‘Some x’

Map, Fold
Ghouls, and Ghosts

To implement the native HOFs

You need to first build the functions using your
AST constructors!

To implement the native HOFs
What are the parameters to map?

To implement the native HOFs
What are the parameters to map?

('a -> 'b) -> 'a list -> 'b list

To implement the native HOFs
How do you build a closure for a function named
‘map’ with takes an argument ‘f’?

To implement the native HOFs
How do you build a closure for a function named
‘map’ with takes an argument ‘f’?

Closure(env, Some ‘map’, ‘f’, <body ….>)

To implement the native HOFs
Closure(env, Some ‘map’, ‘f’, <body ….>)

The body is an expression. Thus, its
constructed from AST nodes!

To implement the native HOFs
Closure(env, Some ‘map’, ‘f’, <body ….>)

The body is an expression. Thus, its
constructed from AST nodes!

 Since we have yet to capture the ` a’ list `
parameter, we may want to start with the
Fun constructor. The rest is up to you

HW4 tips
And other undead creatures

HW4 in a slide
Problem #1: evaluate explicit types and binary
operations

● Use BinOp’s middle argument to find
which binary operator (Plus, Minus) is
used

● Check for that values have the right type
for their operators.

○ Else, raise (MLFailure "ERROR
TEXT")

HW4 reminders in a slide
Problem #1: evaluate explicit types and binary
operations

● Use BinOp’s middle argument to find
which binary operator (Plus, Minus) is
used

● Check for that values have the right type
for their operators.

○ Else, raise (MLFailure "ERROR
TEXT")

Problem #2: Let, Letrec and App

● For the “Lets”, you’ll be updating the
environment. Remember to add the newly
named function in the letrec case

● For App, you’ll be updating the
environment with function parameter

HW4 reminders in a slide
Problem #1: evaluate explicit types and binary
operations

● Use BinOp’s middle argument to find
which binary operator (Plus, Minus) is
used

● Check for that values have the right type
for their operators.

○ Else, raise (MLFailure "ERROR
TEXT")

Problem #2: Let, Letrec and App

● For the “Lets”, you’ll be updating the
environment. Remember to add the newly
named function in the letrec case

● For App, you’ll be updating the
environment with function parameter

Problem #3: Native ops

● Start early!

Fin.
Happy Halloween!

