
Tail Recursion
Zheng Guo

2018/10/10

• Tail call

• Examples of tail recursion

• Preview of map

Agenda

Normal recursion

let rec sum n =

if n <= 1

then 1

else n + sum (n-1)

sum(5)

5+sum(4)

4+sum(3)

3+sum (2)

2+sum(1)

1

Tail recursion

sumTR(5,0)

sumTR(4,5+0)

sumTR(3,4+5)

sumTR(2,3+9)

sumTR(1,2+12)let rec sum n =

let rec sumTR n acc =

if n <= 0

then acc

else sumTR (n-1) (n+acc)

in sumTR n 0

sumTR(0,1+14)

Tail recursion

sumTR(5,0)

sumTR(4,5+0)

sumTR(3,4+5)

sumTR(2,3+9)

sumTR(1,2+12)let rec sum n =

let rec sumTR n acc =

if n <= 0

then acc

else sumTR (n-1) (n+acc)

in sumTR n 0

sumTR(0,1+14)

Why tail recursion

• Compiler is SMART!

• Tail recursions are optimized into loops to save memory and

time!

Tail call

• Tail call: the resulting value is immediately returned (no further

computation is performed on it by the recursive caller)

let rec sum n =

if n <= 1

then 1

else x + sum (n-1)

let rec sum n =

let rec sumTR n acc =

if n <= 0

then acc

else sumTR (n-1) (n+acc)

in sumTR n 0
There is addition here!

Tail call

• Tail call: the resulting value is immediately returned (no further

computation is performed on it by the recursive caller)

• let rec f p = f p’

• let rec f p = if cond then f p1 else f p2

• let rec f p = let b1 … bn in f p’

• let rec f p = match e with case1 -> f p1 | case2 -> f p2 …

Is this a tail call?

Let f be a recursive function

(a) f x y

(b) (f x y) * 2

(c) f (f x y) z

(d) if y < z then f x y else z

(e) match x with

| [] -> f 0 []

| hd::tl -> f hd tl

Is this a tail call?

Let f be a recursive function

(a) f x y

(b) (f x y) * 2

(c) f (f x y) z

(d) if y < z then f x y else z

(e) match x with

| [] -> f 0 []

| hd::tl -> f hd tl

Write a tail recursion

• Create a helper function that takes accumulators

• Old base case becomes initial accumulator

• New base case becomes final accumulator

let rec sum n =

if n <= 0

then 0

else x + sum (n-1)

let rec sum n =

let rec sumTR n acc =

if n <= 0

then acc

else sumTR (n-1) (n+acc)

in sumTR n 0

Write a tail recursion

• Create a helper function that takes accumulators

• Old base case becomes initial accumulator

• New base case becomes final accumulator

let rec sum n =

if n <= 0

then 0

else x + sum (n-1)

let rec sum n =

let rec sumTR n acc =

if n <= 0

then acc

else sumTR (n-1) (n+acc)

in sumTR n 0

Example: sum a list of int

sumList : int list -> int

let rec sumList xs = match xs with

| [] -> 0

| hd::tl -> hd + sumList tl

let rec sumList xs =

let rec sumListTR xs acc = match xs with

| [] -> acc

| hd::tl -> sumListTR tl (hd + acc)

in sumListTR xs 0

Tail call annotation

let rec sum n =

if n <= 1

then 1

else n + (sum[@tailcall]) (n-1)

This assertion checks whether this function call is a tail call, if not

the compiler gives you a warning.

replicate : ‘a -> int -> ‘a list

let rec replicate x n =

if n <= 0 then []

else x::replicate (n-1) x

let rec replicate x n =

let rec replicateTR x n acc =

if n <= 0 then acc

else replicateTR x (n-1) (x::acc)

in replicateTR x n []

Example: make a list with n copys of the element x

Example: remove odd numbers

removeOdds : int list -> int list

let rec removeOdds xs = match xs with

| [] -> []

| hd::tl -> if hd mod 2 = 0 then hd::removeOdds tl

else removeOdds tl

let removeOdds xs =

let rec removeOddsTR xs acc =

match xs with

| [] -> List.rev acc

| hd::tl -> if hd mod 2 = 0 then removeOddsTR tl (hd::acc)

else removeOddsTR tl (acc)

in removeOddsTR xs []

Example: list partition

partition : int -> int list -> (int list, int list)

let rec partition x xs = match xs with

| [] -> ([], [])

| hd::tl -> let (l,r) = partition x tl in

if hd <= x then (hd::l,r) else (l,hd::r)

let partition x xs =

let rec partitionTR x xs lacc racc = match xs with

| [] -> (List.rev lacc, List.rev racc)

| hd::tl -> if hd <= x then partitionTR x tl (hd::lacc) racc

else partitionTR x tl lacc (hd::racc)

in partitionTR x xs [] []

Example:

[; ; ;]

[“John Muir”; “Revelle” ; “Thursgood Marshall”;”Earl Warren”]

name

getCollegeNames xs =

match xs with

| [] -> []

| hd::tl -> (name hd)::(getCollegeNames tl)

Example:

[; ; ;]

[“Rick” ; “Sorin” ; “Pradeep” ; “Leo”]

firstname

getFirstNames xs =

match xs with

| [] -> []

| hd::tl -> (firstname hd)::(getFirstNames tl)

getCollegeNames xs =

match xs with

| [] -> []

| hd::tl -> (name hd)::(getCollegeNames tl)

getFirstNames xs =

match xs with

| [] -> []

| hd::tl -> (firstname hd)::(getFirstNames tl)

map f xs =

match xs with

| [] -> []

| hd::tl -> (f hd)::(map f tl)

Map

[1;2;3] [1;4;9]square

let square x = x * x;;

map square [1;2;3];;

Map

[1;2;3] [true ; false; false]eqOne

let eqOne = (=) 1;;

map eqOne [1;2;3];;

Map

[1;2;3] [[“a”];[”a”;”a”];[”a”;”a”;a”]]

let f = replicate “a”;;

map f [1;2;3];;

replicate

• More about map next time!

