
ML Crash Course
Zheng Guo

2018/10/03

• OCaml basics

• Questions about PA1

• Preview of tail recursion

Agenda

Imperative vs Functional

Pure Functional Programming Language

• Program is an expression

• can be evaluated to a value

• no statements here (no assignments, no pointers, no loops)

• Functions are values

• can be passed as arguments to other functions

• can be returned as results from other functions

• can be partially applied (arguments passed one at a time)

Everything is value

1;;

- : int = 1

1 + 2;;

- : int = 3

(+) 1 2;;

- : int = 3

"cat" ^ "dog";;

- : string = "catdog"

Everything is value

(+);;

- : int -> int -> int = <fun>

if 1 > 0 then "true" else "false";;

- : string = "true"

let f = (<) 1;;

val f : int -> bool = <fun>

f 2;;

- : bool = true

Strict static typing

1 + "cat";;

“1cat”?

1 || false;;

true?

3 +. 4.2;;

7.2?

Type Error!

Recursion

Do NOT forget the keyword rec

Implement factorial in OCaml

• Base case: n <= 1

• Recursive case: n > 1

let rec factorial x =

if x <= 1

then 1

else x * factorial (x-1)

Pattern matching

Match values against pattern (deconstruct) and do variable binding

Pattern

• either a variable

• or a constructor applied to other patterns

match x with

| [] -> …

| hd::tl -> …

let (x,y) = (1,2) in x + y

let (x,h::t) = ("Hello", [1;2;3;4]);;

let (1+2,y) = (1,2) in y
let (f x,y) = (1,2) in y

Lists

1 2 4

1 2 4

[1;2;4]

1 :: [2;4]::

1 2 4 1 :: 2 :: [4]:: ::

1 2 4 1 :: 2 :: 4 :: []:: :: :: 4

Pattern matching

(* lastTwo :: ‘a list -> (’a, ’a) *)

let rec lastTwo xs = match xs with

| [] -> failwith "empty list"

| [x] -> failwith "only one element"

| [x;y] ->(x,y)

| hd::tl -> lastTwo tl

(* duplicate :: ‘a list -> ‘a list -> ‘a list *)

let rec duplicate xs = match xs with

| [] -> []

| hd::tl -> hd::hd::(duplicate tl)

PA1

• Any library function is NOT allowed

• No `@` operator or List.* function

• mod is allowed

• Helper functions are allowed

• Functions with rec are not necessarily recursive functions

Recursion

let rec factorial x =

if x <= 1

then 1

else x * factorial (x-1)

factorial(5)

5*factorial(4)

4*factorial(3)

3*factorial(2)

2*factorial(1)

1

Tail recursion

factorialHelper(5,1)

factorialHelper(4,5*1)

factorialHelper(3,4*5)

factorialHelper(2,3*20)

factorialHelper(1,2*60)let rec factorial x =

let rec factorialHelper x acc =

if x <= 1

then acc

else factorial (x-1, x*acc)

in factorialHelper x 1

Tail recursion

• Tail recursion: the resulting value is immediately returned (no further

computation is performed on it by the recursive caller)

let rec factorial x =

if x <= 1

then 1

else x * factorial (x-1)

let rec factorial x =

let rec factorialHelper x acc =

if x <= 1

then acc

else factorial (x-1, x*acc)

in factorialHelper x 1
There is computation

multiplication here!

Why tail recursion

• Tail recursion: the resulting value is immediately returned (no further

computation is performed on it by the recursive caller)

• Compiler is SMART!

• Tail recursions are optimized into loops to save memory and time!

Example: tail recursion

sumList : int list -> int

listReverse : ‘a list -> ‘a list

removeOdds : int list -> int list

take : int -> ‘a list -> ‘a list

