ML Crash Course

Zheng Guo
2018/10/03

Agenda

* OCaml basics
* Questions about PAT

* Preview of tail recursion

Imperative vs Functional

public class Quicksort {
public static void swap(int[] array, int i, int j) {
int tmp = array[i];
array[i] = array[j];

array[j] = tmp;

public static int partition(int arr[], int left, int right) {
int pivot = arr[(left + right) / 2]; // Pick a pivot point. Can be an element.

while (left <= right) { // Until we've gone through the whole array

// Find element on left that should be on right]_E't r'.EC qu 1{: k 1 =

while (arr[left] < pivot) {

leftis; match 1 with

}
// Find element on right that should be on left [] - []
while (arr[right] > pivot) {

right--; | [X] _}].
i

| p «: rl -» (match List.partition (fun x -> x < p) rl with

// Swap elements, and move left and right indices
if (Left <= right) { (11, 12) -> (quick 11) @ [p] @ (quick 12))
swap(arr, left, right);
left++;
right--;

}

return left;

public static void quickSort(int arr[], int left, int right) {
int index = partition(arr, left, right);
if (left < index - 1) { // sort left half
quicksort(arr, left, index - 1);
}
if (index < right) { // Sort right half

quickSort(arr, index, right);

Pure Functional Programming Language

* Program is an expression

e can be evaluated to a value

 no statements here (no assignments, no pointers, no loops)

* Functions are values
* can be passed as arguments to other functions
e can be returned as results from other functions

* can be partially applied (arguments passed one at a time)

Everything is value

¥ 1;;

1+ 2;;

(+) 1 2;;

>

Ilcatll lldOgll;;

Everything is value

(+);;

if 1 > 0 then "true" else "false";;

let £ = () 1;;
val f :
¥ f 2;;

Strict static typing

1 + "cat";;

“lcat”?
1 || false;;

true? @ Type Error!
¥ 3 +. 4.2;;

7.2°

Recursion
Do NOT forget the keyword

Implement factorial in OCaml
e Basecase:n<=1
e Recursivecase:n>1

let factorial x =
if x <=1
then 1
else x * factorial (x-1)

Pattern matching

Match values against pattern (deconstruct) and do variable binding

Pattern
 either a variable
e or a constructor applied to other patterns

X
| [] -> . let (1+2,v)
| hd::tl1 -> .. let (f x,v)

let (x,y) = (1,2) in x +

let (x,h::t) = (, [1)5

N\ N

o

o

SN

e e
5 35

Lists

[1;2;4]

1 :: [2;4]

o [4]

o [

Pattern matching

(* lastTwo :: ‘a list -> (’a, ’a) *)
let rec lastTwo xs = match xs with

(] -> failwith "empty list"

(x] -> failwith "only one element”
[X53y] ->(x,y)

hd::tl -> lastTwo tl

(* duplicate :: ‘a list -> €a list -> ‘a list *)
let rec duplicate xs = match xs with
| [1 -> [1]

| hd::tl -> hd::hd::(duplicate tl)

PAT

 Any library function is NOT allowed

 No @ operator or List.* function
* mod is allowed

 Helper functions are allowed

 Functions with rec are not necessarily recursive functions

Recursion

let rec factorial x =
if x <=1
then 1
else x * factorial (x-1)

2*factorial(1)

3*factorial(2)

4*factorial(3)

5*factorial(4)

factorial(5)

Tail recursion

let rec factorial x =
let rec factorialHelper x acc =
if x <=1
then acc
else factorial (x-1, x*acc)

in factorialHelper x 1

factorialHelper(1,2*60)

factorialHelper(2,3*20)

factorialHelper(3,4*5)

factorialHelper(4,5*1)

factorialHelper(5,1)

Tail recursion

* Tail recursion: the resulting value is immediately returned (no further

computation is performed on it by the recursive caller)

let rec factorial x =

let rec factorial x = let rec factorialHelper x acc =

if x <=1 .
if x <=1
then 1
else then acc

\\\ else

There is computation . .
multiplication here! in factorialHelper x 1

Why tail recursion

* Tail recursion: the resulting value is immediately returned (no further

computation is performed on it by the recursive caller)

* Compiler is SMART!

* Tail recursions are optimized into loops to save memory and time!

Example: tail recursion

sumList : int list -> int
listReverse : ‘a list -> fa list
removeOdds : int list -> int list

take : int -> ‘a list -> ‘a list

