CSE 130, Fall 2005: Final Examination

Name: \qquad

ID: \qquad

Instructions, etc.

1. Write your answers in the space provided.
2. Wherever it says explain, write no more than three lines as explanation. The rest will be ignored.
3. The points for each problem are a rough indicator (when converted to minutes), of how long you should take for the problem.
4. Good luck!

$1(15)$	
$2(15)$	
$3(10)$	
$4(20)$	
$5(20)$	
$6(30)$	
$7(15)$	
$8(10)$	
Total (135)	

1. [15 Points] For each of the following Ocaml programs, if the code is well-typed, write down the value of ans, otherwise, if the code has a type problem, write "type error".
(a) let ans =
```
let x = 10 in
let f y =
let a = x + 1 in
let b = y + a in
a + b in
f 100
```

(b) let ans = let $\mathrm{f} \mathrm{n}=10$ in let $\mathrm{f} n=$ if $\mathrm{n}>0$ then $\mathrm{n}+(\mathrm{f}(\mathrm{n}-1))$ else 0 in f 5
(c) let ans = let $\mathrm{f} \mathrm{g} \mathrm{x}=\mathrm{g}$ (g x) in let $\mathrm{h} 0=$ fun $\mathrm{x}->\mathrm{x} * \mathrm{x}$ in let h1 = f h0 in let h2 = f h1 in h2 2
2. [15 Points] For each of the following Ocaml programs, write down the type of ans.
(a) let ans = let $\mathrm{f}=\mathrm{f}=1$ in f
(b) let ans f g x = if $\mathrm{x}>0$ then f x else g x
(c) let ans l = match 1 with
[] -> [] | (hx,hy)::t -> (hx hy)::(ans t)
3. Consider the Ocaml module described below:

```
module Set : SETSIG =
    struct
        exception Duplicates
        type 'a set = 'a list
        let new x = [x]
        let rec mem s x =
            match s with
                [] -> false
                | h::t -> if x <> h then mem t x
                        else if mem t x then raise Duplicates
                        else true
        let add s x =
                if mem s x then s else (x::s)
        let union s1 s2 =
                match s1 with
                [] -> s2
                | h::t -> union t (add s2 h)
            let choose s =
                match s with
                [] -> None
                | h::t -> Some (h,t)
    end
```

and the two possible signatures:

```
(A)
module type SETSIG =
sig
type 'a set = 'a list
val new : 'a -> 'a set
val mem : 'a set -> 'a -> bool
val choose : 'a set -> ('a * 'a set) option
val union : 'a set -> 'a set -> 'a set
end
```

(B)
module type SETSIG $=$
sig
type 'a set
val new : 'a -> 'a set
val mem : 'a set -> 'a -> bool
val add : 'a set -> 'a -> 'a set
val choose : 'a set -> ('a * 'a set) opti
val union : 'a set -> 'a set -> 'a set
end
(a) [5 Points] For which one of the signatures (A) or (B), can a client can cause the exception Duplicates to get raised? Write down a client expression that would cause this exception to get raised. For the other signature explain why the exception will never get raised.

Signature:

Client Expression:

Explanation:
(b) [5 Points] Recall the filter function described in class:

```
let rec filter f l =
    match l with
        [] -> []
    | h::t -> if f h then h::(filter f t) else filter f t
```

Consider the client function:

```
let intersection s1 s2 =
    filter (mem s2) s1
```

For one of the signatures (A) or (B), the the client function intersection compiles, i.e. is well typed. Which one? What is the inferred type of intersection using this signature ?

Signature:

Inferred Type: intersection : \qquad -> \qquad -> \qquad
(c) [10 Points] Write an equivalent version of intersection that would compile with both signatures.
4. Consider the following Ocaml datatype used to represent trees.
type 'a tree $=$ Leaf of 'a | Node of 'a * 'a tree * 'a tree
(a) [5 Points] Write the value of type int tree that corresponds to the following pictorial representation of a tree.

(b) [5 Points] Consider the following function:

```
let rec tf f b t =
    match t with
        Leaf x -> f (b,x)
    | Node (t1,t2) -> tf f (tf f b t1) t2
```

What is the typeof the function tf ? Answer this by filling in the blanks:
\qquad -> \qquad -> \qquad -> \qquad
(c) [5 Points] Fill in the blanks below to obtain an implementation of: to_list : 'a tree -> 'a list
that returns the list of values occurring as leaves of the tree.

```
let to_list t =
        let f _-_- =
```

\qquad

``` in
        let b = _-_-_-_-_-_-_-_-_-_-_-_-_---- in
        tf f b t
```

(d) [5 Points] Fill in the blanks below to obtain an implementation of: size : 'a tree -> int
that returns the list of values occurring as leaves of the tree.

```
let size t =
    let f ____ =
```



``` in
        let b =in
(e) [5 Points] Write a tail-recursive version of tf. Hint: This is difficult. You may need a helper function.
5. For each of the following Python programs, write down the value of ans, or write error together with an explanation, if an error occurs. Write your answers on the blank space on the right.
(a) [5 Points]
```

x = [1,2,3]
y = ["a","b","c"]
def f(x):
x = y
f(x)
ans = x[0]

```
(b) [5 Points]
```

def f(x):
def g(y):
return a(x+y)
return g
a = f(10)
ans = a(0)

```
(c) \([8\) Points \(]\)
\(a=[0]\)
def \(f(x)\) :
\(\mathrm{a}=\) [10]
def \(g(y)\) :
\(a[0]=a[0]+x+y\)
return a[0]
return \(g\)
foo \(=f(10)\)
foo (1000)
ans \(=(\mathrm{a}[0], \mathrm{foo}(1))\)
(d) [7 Points]
```

class A():
def __init__(self):
self.x = []
def a(self):
self.x += ["a"]
self.d()
class B(A):
def b(self):
self.x += ["b"]
class C(A):
def a(self):
self.x += ["ca"]
def c(self):
self.x += ["c"]
class D(B,C):
def d(self):
self.x += ["d"]
self.b()
self.c()
o = D()
o.a()
ans = 0.x

```
(e) [5 Points]
def foo( \(n\) ):
            i \(=1\)
            while (i <= n):
            i += i
            yield i
ans \(=0\)
\(\mathrm{x}=\mathrm{foo}(10)\)
for i in \(x\) :
    ans += i
(f) [5 Points]
something with decorators ?
(a) [5 Points] Use yield to write a function element_and_rest which takes a list as input and returns an iterator over tuples which consist of an element of the list, and the list with that element removed. The elements of the list should be in the same order as in the original list. The function element_and_rest should not return a list. When you are done, the following:
```

>>> for t in element_and_rest([1,2,3,4,5]):
print t

```
should result in:
(1, \([2,3,4,5])\)
(2, [1, 3, 4, 5])
(3, [1, 2, 4, 5])
(4, \([1,2,3,5])\)
(5, \([1,2,3,4])\)
The body of the function should be at most 3 lines long. Write it by filling in the blanks below:
```

def element_and_rest(l):

```
\(\qquad\)
\(\qquad\)
\(\qquad\)
(b) [10 Points] Write a function permutations which takes a list as input and returns an iterator over permutations of the given list. The function should not compute all permutations before returning. When you are done, the following:
```

for p in permutations([1,2,3]):
print p

```
should result in:
\([1,2,3]\)
\([1,3,2]\)
[2, 1, 3]
\([2,3,1]\)
\([3,1,2]\)
[3,2,1]
The body of the function should be at most 5 lines long. Write it by filling in the blanks below:
```

def permutations(l):

```
\(\qquad\)
\(\qquad\)
\(\qquad\)
6. Recall that we say \(\mathrm{P}<\) : Q if P is a structural subtype of Q . Consider the following Java code.
```

interface A {
Object a;
}
interface B {
int a;
int b;
}
interface C {
A f(B x);
}
interface D {
/* OUT */ _____ f (/* IN */ _____ x);
}

```
(a) [2 Points] True or False: \(A<: B\) ?
(b) [2 Points] True or False: B <: A ?
(c) [6 Points] Write four possible ways of filling in the blanks in the definition of D (i.e. of completing the type of \(f\) ) such that \(D<\) : \(C\).
i. /* IN */ \(\qquad\) , /* OUT */ _ \(\qquad\)
ii. /* IN */ _-_-_-_-_-_-_ , /* OUT */ \(\qquad\)
iii. /* IN */
/* OUT */ \(\qquad\)
iv. /* IN */ \(\qquad\) /* OUT */
7. [5 Points] In less than three lines, explain how decorators are different from aspects.
8. [5 Points] Consider the following C-like code.
```

int y = 1;
void f(int x){
int y;
y = x + 1;
x = x + 10;
g(x);
printf("x = %d \n",x);
}
void g(int x){
y = x + 1;
}
void main(){
f(y);
printf("y = %d \n",y)
}

```

What is the output of executing this code under
(a) static scoping?
(b) dynamic scoping ?
9. Consider the following Prolog code:
```

actor(xmen,jackman).
actor(xmen,berry).
actor(scoop,jackman).
actor(scoop,johanssen).
actor(lost_in_translation,murray).
actor(lost_in_translation,johanssen).
actor(ghostbusters,murray).
actor(ghostbusters, akroyd).
actor(batmanreturns,bale).
actor(batmanreturns,caine).
actor(dirtyrottenscoundrels,martin).
actor(dirtyrottenscoundrels,caine).
actor(shopgirl,danes).
actor(shopgirl,martin).

```
(a) [2 Points] Write a predicate costar \((\mathrm{X}, \mathrm{Y})\) that is true when \(\mathrm{X}, \mathrm{Y}\) have acted in the same movie.
(b) [3 Points] Write a predicate busy (X) that is true when X has acted in more than one movie.
(c) [5 Points] Write a predicate bacon(X,Y) that is true when there is a sequence of actors \(Z_{1}, Z_{2}, \ldots, Z_{n}\) such that for each \(i\), the pair \(Z_{i}, Z_{i+1}\) have acted in the same movie, and X is \(Z_{1}\) and Y is \(Z_{n}\).
10. For this problem, you will write Prolog code to implement the magic algorithm whereby ML is able to infer the types of all expressions. First, we shall encode (nano) ML expressions as Prolog terms via the following grammar.
\[
\begin{aligned}
\text { expr }::= & \\
& \text { const }(\mathrm{i}) \\
& \mid \operatorname{var}(\mathrm{x}) \\
& \left\lvert\, \begin{array}{ll}
\operatorname{plus}(\text { expr }, \text { expr }) \\
\text { lexpr }, \text { expr }) \\
\text { ite }(\text { expr }, \text { expr }) \\
& \\
& \text { letin }(\mathrm{x}, \text { expr }, \text { expr }) \\
\text { fun }(\operatorname{var}(\mathrm{x}), \text { expr }) \\
\operatorname{app}(\text { expr }, \text { expr })
\end{array}\right.
\end{aligned}
\]

Similarly, we shall encode ML types as Prolog terms using the following grammar:
\[
\text { type }::=\text { int } \mid \text { bool | arrow(type, type) }
\]

The table below shows several examples of Ocaml expressions, the Prolog term encoding that expression, and the Prolog term encoding the type of the expression.
\begin{tabular}{|c|c|c|}
\hline ML Expression & Prolog Expression Term & P1 \\
\hline 2 & const(2) & 1 \\
\hline x & \(\operatorname{var}(\mathrm{x})\) & \\
\hline \(2+3\) & plus(const (2), const (3)) & \\
\hline 2 <= 3 & leq(const (2), const (3)) & \\
\hline fun \(\mathrm{x} \rightarrow\) - \(\mathrm{x}<=4\) & fun( \(\operatorname{var}(\mathrm{x})\), leq( \(\operatorname{var}(\mathrm{x})\), const (4))) & \\
\hline fun \(\mathrm{x} \rightarrow\) fun \(\mathrm{y} \rightarrow\)-> if x then y else 0 & fun(var (x), fun(var (y), ite(var (x), var (y), const (0)))) & \\
\hline let \(\mathrm{x}=10\) in x & letin(var (x), const (10), var (x)) & \\
\hline fun x -> let \(\mathrm{y}=\mathrm{x}\) in \(\mathrm{y}+\mathrm{y}\) & fun(var (x), letin(var (y) , var (x), plus (var (y) , var (y)) )) & \\
\hline
\end{tabular}
(a) [5 Points] Write a Prolog predicate envtype (Env, X, T), such that envtype ([[x1, t1] , [x2, t2] , ..., [xn, vn] ] is true if X equals the first term xi corresponding to variable xi and T equals the corresponding ti corresponding to the type of the variable xi in the type environment ti. When you are done, you should get the following behavior:
?- envtype([[x,int], [y,bool] ], x,T). \(\mathrm{T}=\) int
Yes
?- envtype([ \([\mathrm{x}, \mathrm{int}],[\mathrm{x}, \mathrm{bool}]], \mathrm{x}, \mathrm{T})\).
T = int
Yes
?- envtype([[x,int],[x,bool]], \(x\), bool).
No
(b) [20 Points] Write a Prolog predicate typeof (Env, E, T) that is true when the term \(T\) is the correct ML type of the ML expression corresponding the term \(E\) in the type environment corresponding to the list Env. Write your solution by filling in the grid below:
\begin{tabular}{|c|c|}
\hline typeof(Env, const(I), T) & \\
\hline typeof (Env, var(X),T) & \\
\hline typeof (Env, plus(E1,E2), T) & \\
\hline typeof (Env, leq(E1, E2), T) & \\
\hline typeof(Env,ite(E1, E2, E3), T) & \\
\hline typeof (Env,letin(var(X),E1,E2),T) & \\
\hline typeof (Env, fun(var(X), E) , T) & \\
\hline typeof (Env, app(E1, E2) , T) & \\
\hline
\end{tabular}

When you are done, you should get the following output:
```

?- typeof([[x,int],[y,bool]],Var(x),T).
T = int
Yes
?- typeof([],plus(const(2),const(3)),T).
T = int
Yes
?- typeof([],leq(const(2),const(3)),T).
T = bool
Yes
?- typeof([],fun(var(x),leq(var(x),const(4))),T).
T = arrow(int,bool)
Yes
?- typeof([],fun(var(x),fun(var(y),ite(var(x),var(y),const(0)))),T).
T = arrow(bool,arrow(int,int))
Yes
?- typeof([],letin(var(x),const(10),var(x)),T).
T = int
Yes
?- typeof([],fun(var(x),letin(var(y),var(x),plus(var(y),var(y)))),T).
T = int
Yes
?- typeof([],app(fun(var(x),plus(var(x),const(1))),const(19)),T).
T = int
Yes

```
(c) [[5] Points] Does your predicate infer polymorphic types ? In other words, using your implementation of typeof will the result of the following query be Yes or No ? Explain.
```

?- typeof([],letin(var(id),fun(var(x),var(x)),
letin(var(y),app(var(id),leq(const(2),const(3))),
app(var(id),const(1)))),T).

```
(d) [[Extra Credit] Points] Extend your solution so that the the above query succeeds. type inference is polymorphic. That is, it should successfully find an appropriate solution for T for the query above.```

