Name:

ID :

CSE 130, Spring 2013: Midterm Examination
May 9th, 2013

Do not start the exam until you are told to.

This is a open-book, open-notes exam, but with
no computational devices allowed (such as calcula-

tors/cellphones/laptops).

Do not look at anyone else’s exam. Do not talk to 1. 20 Points
anyone but an exam proctor during the exam.

Write your answers in the space provided. 9. 30 Points

Wherever it gives a line limit for your answer, write
no more than the specified number of lines. The rest

will be ignored. 3. 15 Points

Work out your solution in blank space or scratch pa-
per, and only put your answer in the answer blank TOTAL 65 Points
given.

In all exercises, you are allowed to use the “@” op-
erator.

Good luck!

1. [20 points] Let’s warm up with two small folds.

a. [10 points | Use fold_left to implement length :
its length. For your reference, the type of fold_left is given below:

’a list -> int, which takes a list and returns

fold_left: (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a
Fill in the implementation of length below using fold_left:

let length 1 =

b. [10 points]
Use fold_left to implement remove :
and returns a new list in which all occurrences of the given element have been removed. The elements in

the returned list should be in the same order as in the original list. Do not use List.rev.
Fill in the implementation of remove below using fold_left:

’a list -> ’a -> ’a list, which takes a list and an element,

let remove 1 x =

2. [30 points] In this question you will write several functions that will allow us to use OCaml lists to represent
arrays that support indexing and functional updates. Each time an index is passed in, you can assume the
index is greater or equal to 0.

a. [10 points | Indexing. First, you will write a function ith : ’a list -> int -> ’a -> ’a, which
returns the i** element of a list. In particular, given a list 1, an integer index i greater or equal to 0, and
a “default” value d, then (ith 1 i d) returns the i** element of the list 1, or d if this element does not
exists. For example:

lth [Ilall;Ilbll;llcll;lldll] 0 IIII;;
- : string = "a"

lth [llall.Ilbll.llcll.lldH] 1 nn.,. .
- : string = "b"

lth [Ilall;Ilbll;llcll;lldll] 2 Illl;;
- : string = "c"

ith [llall;llbll;llcll;lldll] 3 IIII;;
- : string = "4"

lth [llall;Ilbll;llcll;lldll] 4 llll;;
- : string = ""

Fill in the implementation of ith below:

let rec ith 1 i d =

match 1 with

b. [10 points | Update. Next write a function update : ’a list -> int -> ’a -> ’a list, which
updates the i'” element of a list. Since we are doing functional programming, the update function does not
actually update the list, it returns a new list in which the i*" element has been replaced. More specifically,
given a list 1, an integer index i greater or equal to 0, and a new value n, then (update 1 i n) returns
a new list which is equal to 1, except that the i** element of the returned list is equal to n. If the it"
element does not exist, update returns a list equal to 1. For example:

update ["a";"b";"c";"d"] 0 "ZZZ";;
- String list = ["ZZZ"; "b"; "C"; "d"]

update ["a";"b";"c";"d"] 1 "ZZZ";;
- string list = [nan; nzzzu; "C"; "d"]

update ["a";"b";"c";"d"] 2 "ZZZ";;
- String list = [nan; "b"; "ZZZ"; "d"]

update ["a“;"b";"c";"d"] 3 "ZZZ";;
- string list = [nan; "b"; "C"; nzzzn]

update ["a";"b";"c";"d"] 4 "ZZZ";;
. string list = ["a"' npM. nen. "d"]

Fill in the implementation of update below:

let rec update 1 i n =

match 1 with

c. [10 points | Functional Update, Revisited. Next you will write a new version of update, namely a
function update2 : ’a list -> int -> ’a -> ’a -> ’a list, which updates the i** element of a list,
but also extends the list with a number of default values if the i*" element does not exist. In particular,
given a list 1, an integer index i greater or equal to 0, a new value n, and a “default” value d, then
(update 1 i n d) returns a new list which is equal to 1, except that the i*" element of the returned list
is equal to n. If the i" element does not exist, update2 returns a list in which enough default values d
are added to the returned list so that the i*"* element exists. For example:

updatGQ [llall;llbll;llcll;Ildll] O IIZZZII llll;;
- string list = ["ZZZ"; llbll; llcll; lldll]

update2 [llall;llbll;llcll;Ildll] 1 IIZZZII n Il;;
- String list = [Ilall; IIZZZII; "C"; lldll]

update2 ["a";"b";"c";"d"] IRV AA/AL nn;;
- string list = ["a"; "b"; "ZZZ"; "d"]

update2 [“a";"b";"c";"d“] 3 "ZZ7" un;;
- String list = [nau; "b"; "C"; uzzzn]

update2 [llall;llbll;"c";Ildll] 4 IIZZZH n Il;;
- : String list = [Ilall; Ilbll; Ilcll; Ildll; IIZZZII]

updat92 ["a";"b";"C";"d“] 5 llZZZII n ";;
- Strlng 1lSt = [llall; llbll; "C"; lldll; n ll; IIZZZH]

update2 [llall;llbll;llcll;Ildll] 6 lIZZZlI n Il;;
P : String list = [Ilall; Ilbll; Ilcll; Ildll; n II; IIII; IIZZZ"]

update2 ["a";"b";"c";"d"] 7 nggzgn nn;;

. string 1ist = [IIaII ; Ilbll ; c ; |Idl| ; nn ; nn ; nn ; IlZZle]

Fill in the implementation of update2 below (hint: In my solution the h: :t case of update and update?2
are exactly the same. The only difference between update and update? is in the base case):

let rec update2 1 i nd =

match 1 with

3. [15 points] In this problem you will write a function categorize : (’a -> int) -> ’a list -> ’a list list
which will categorize the elements of a list into different bins. Bins are numbered starting at 0. The first
parameter to categorize is a function f, which given an element returns what bin to place that element in.
The second parameter to categorize is the list 1 of elements to categorize. Then (categorize f 1) returns
a list r such that the i*" element of r is a list of all elements from 1 for which f returned i. The length of the
list r is one more than the maximum value returned by £ when called on the elements of 1. For example:

9

let £ i = 4if 1 < 0 then O
else (if i < 10 then 1
else (if i < 20 then 2 else 3));;
val £ : int -> int = <fun>

categorize f [1;2;-3;15;7;30;-1;22;33;14;105];;
- : int list list = [[-3; -1]1; [1; 2; 71; [15; 14]; [30; 22; 33; 105]]

categorize f [-3;12;14];;
- @ int list list = [[-3]; [1; [12; 14]]

categorize f [];;
- : int list list = []

Note a few things:
e the elements in each bin appear in the same order as they did in the original list

e in the first call to categorize four bins are returned, numbered 0, 1, 2 and 3, because in this call £
returns a maximum of 3.

e in the second call to categorize three bins are returned, because in this call £ returns a maximum of 2

Fill in the implementation of categorize below (hint: you may want to use some of the functions you wrote
in the previous problem):

let categorize f 1 =

in List.fold_left fold_fn base 1

