
1

Class-based model

• Have classes that describe the format of

objects

• Create objects by stating the class of the

object to be created.

• The created object is called an instance

of the class

Class-based model

• In a class based model, the class is

sometimes an object too (as is the case in

Python)

• Q: what is the class of the class object?

Class-based model

• In a class based model, the class is

sometimes an object too (as is the case in

Python)

• Q: what is the class of the class object?

– The “meta-class”? But then do we have a

meta-meta-class?

– many possibilities, but no clear answer

– turns out to be a nasty problem!

What’s the alternative?

• Suppose we didn’t have classes

• How would one survive?

Prototype-based models

• Just have objects
– Create a new object by cloning another one

– Add/update fields later

• Benefits:
– Simplifies the definition of the language

– Avoids meta-class problem

• Drawbacks:
– Don’t have classes for static typing

– Some find the model harder to grock

• Python has hints of a prototype-based language.
Go back to code

Methods

2

Methods Structural, nominal subtyping

• p and q of the same type?

– In Java, no: nominal subtyping (using names

of classes to determine subtyping)

– In Python, yes: structural subtyping (using

fields/methods to determine subtyping)

class Point:

x = 0

y = 0

def move(self,dx,dy):
self.x = self.x + dx

self.y = self.y + dy

p = Point()

class Point2:

x = 0

y = 0

def move(self,dx,dy):

self.x = self.x + dx

self.y = self.y + dy

q = Point2()

Next: constructors

• Go back to code

Inheritance

• Key concept of OO languages

• Someone tell me what inheritance is?

Inheritance

• Key concept of OO languages

• Someone tell me what inheritance is?

• isa “concept”

• Examples?

Examples of inheritance

3

Overriding

• Super-class method can be overwritten in

sub-class

• Polymorphism

– external clients can write code that handles

many different kinds of objects in the same

way

– don’t care about implementation details: as

long as the object knows to draw itself,

that’s good enough

Polymorphism, continued

• Super-class can have methods that are

not overridden, but that work differently

for different sub-classes

• For example: super-class method

functionality changes because the super-

class calls a method that gets overwritten

in the sub-class

Simple example

class Shape:

def draw(self, screen):

some python code here

def erase(self, screen):

screen.setcolor(“white”)

self.draw(screen)

screen.setcolor(“black”)

class Rec(Shape):

def draw(self, screen):

some python code here

class Oval(Shape):

def draw(self, screen):

some python code here

Stepping away from Python

• What are the fundamental issues with

inheritance?

Stepping away from Python

• What are the fundamental issues with

inheritance?

• Dispatch mechanism

– most compilers use v-tables

– more complicated with multi-methods

• Overloading vs. overriding

– what’s the difference?

• How to decide on the inheritance graph?

– not always obvious, see next example

Rectangle and Square

• Which should be a sub-class of which?

class Rectangle:

length = 0

width = 0

def area(this):

return this.length *

this.width

class Square:

length = 0

def area(this):

return this.length *

this.length

4

Rectangle and Square

• Which should be a sub-class of which?

• Answer is not clear...

class Rectangle:

length = 0

width = 0

def area(this):

return this.length *

this.width

class Square:

length = 0

def area(this):

return this.length *

this.length

Option 1: Rectangle isa Square

class Rectangle(Square):

width = 0

def area(this):

return this.length *

this.width

class Square:

length = 0

def area(this):

return this.length *

this.length

Option 1: Rectangle isa Square

+ Store only what is

needed (one field for

square)

―Does not follow “isa”

relationship from math

(rectangle is not a

square...)

―Have to override area

method

class Rectangle(Square):

width = 0

def area(this):

return this.length *

this.width

class Square:

length = 0

def area(this):

return this.length *

this.length

Option 2: Square isa Recangle

class Rectangle:

length = 0

width = 0

def area(this):

return this.length *

this.width

class Square(Rectangle):

__init__(self,len):

self.length = len

self.width = len

Option 2: Square isa Recangle

class Rectangle:

length = 0

width = 0

def area(this):

return this.length *

this.width

class Square(Rectangle):

__init__(self,len):

self.length = len

self.width = len

+ Follows isa relationship

from math

+ Don’t need to write two

area methods

― Can’t enfore invariant

that length=width

― Use two fields for Square

(len and width)

But, does it matter? Performance is a

tricky matter. Often better to

implement first, then use profiler to

find where bottlenecks are...

Option 3:

class Rectangle(Shape):

length = 0

width = 0

def area(this):

return this.length *

this.width

class Square(Shape):

length = 0

def area(this):

return this.length *

this.length

class Shape:

...

5

Option 3:

class Rectangle(Shape):

length = 0

width = 0

def area(this):

return this.length *

this.width

class Square(Shape):

length = 0

def area(this):

return this.length *

this.length

class Shape:

...

+ Store only what is needed (one field for square)

― Does not follow “isa” relationship from math

(rectangle is not a square...)

― Have to write two area methods

Complex numbers

class Real:

RealPart = 0

class Complex:

RealPart = 0

ComplexPart = 0

The same exact options

present themselves here,

with the same tradeoffs!

Summary of (single) inheritance

• Inheritance is a powerful mechanism

• From the programmer’s perspective,
difficulty is in defining the inheritance
diagram

• From a language implementer’s
perspective, difficulty is in making
dynamic dispatch work

Multiple inheritance

class ColorTextBox(ColorBox,TextPoint):

def draw(self,screen,pos):

ColorBox.draw(self,screen,pos)

r=TextPoint.draw(self,screen,pos)

return r

def __str__(self):

return ColorBox.__str__(self) + " text: " + str(self.text)

What are the issues?

• Inheritance tree becomes a DAG

• What’s the problem?

What are the issues?

• Issue 1: fields/methods with the same

name inherited from two different places

• Issue 2: diamond problem, same exact

field inherited by two different paths

6

What are the issues?

• Because of these issues, Java does not

allow multiple inheritance

• Java does allow multiple inheritance of

interfaces. How is that different from

general multiple inheritance?

How Python solves these issues

• When you say: class C(C1, C2, ...)

• For any attribute not defined in C, Python

first looks up in C1, and parents of C1

• If it doesn’t find it there, it looks in C2

and parents of C2

• And so on...

• What kind of search is this?

How Python solves these issues How Python solves these issues

Does this solve the two issues?

• Issue 1: fields/methods with the same

name inherited from two different places

– Solved because we give leftmost parent

priority

• Issue 2: diamond problem, same exact

field inherited by two different paths

– Solved because there is only one copy

Python’s solutions

• For certain methods, may want one

parent, whereas for other methods, may

want another. Can always overwrite

method and redirect to the right parent

• What about BFS?

7

Next up decorators

• See code

