
1

Final words on functional

programming

Advantages of functional progs

• Functional programming more concise

“one line of lisp can replace 20 lines of C”
(quote from http://www.ddj.com/dept/architect/184414500?pgno=3)

• Recall reverse function in OCaml:

• How many lines in C, C++?

let reverse = fold (::) [];;

Can better reason about progs

• No side effects. Call a function twice

with same params, produces same value

• As a result, computations can be

reordered more easily

• They can also be parallelized more easily

Industry

• From the authors of map reduce:

“Inspired by similar primitives in LISP and

other languages”
http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0003.html

• The point is this: programmers who only

know Java/C/C++ would probably not

have come up with this idea

• Many other similar examples in industry

Industry

• Microsoft: F#, inspired by Ocaml
https://channel9.msdn.com/blogs/pdc2008/tl11

• Jane Street Capital: uses Ocaml for their

trading software

• Facebook: Infer program analysis tool

implemented in Ocaml

• Facebook: Sigma malware detection tool

implemented in Haskell

• Google: map reduce, influenced by FP

• Twitter: uses Scala for their back-end (Scala

has roots in FP and OO)

Stack Overflow Survey

cloud

cloud

https://insights.stackoverflow.com/survey/2016#technology-top-paying-tech

United States World

: functional or heavily influenced by functional

Top Paying by Language (self reported)

http://www.ddj.com/dept/architect/184414500?pgno=3

2

Final words on Constraint

Logic Programming

Different way of thinking

• State constraints, and ask solver to get solution

• Very powerful paradigm: separates constraint

generation from constraint solving

• You generate the constraints, and the used off-

the-shelf solver

• You will see a very powerful application of this

in the last Python assignment

Industry

• Used in Watson, IBM’s Jeopardy-winning

computer

• Used in various niche industries, eg solving

constraints about manufacturing (in many ways

has been superseded in this respect by

AI/statistical methods)

Recap of the course so far

• 4 weeks of functional with Ocaml

• 1 week of constraint logic programming

with Prolog

• Next: 4 weeks of OO with Python

OCaml/Python comparison

ML Python

PL paradigm

Basic unit

Types

DataModel

OCaml/Python comparison

ML Python

PL paradigm functional OO/imperative

Basic unit Expr/value
Objects/

messages

Types statically dynamicaclly

DataModel env lookup
“pointers” to

mutable objs

3

Dynamic vs. Static, OO vs. Func

Statically typed
Dynamically

typed

OO Java
Python,

Smalltalk

Functional Ocaml, Haskell Lisp/Scheme

Python

• Python has a very relaxed philosophy

– if something "can be done" then it is allowed.

• Combination of dynamic types +

everything is an object makes for very

flexible, very intuitive code.

No static types

• No static type system to "prohibit"

operations.

• No more of that OCaml compiler giving

you hard-to-decypher error messages!

• And... No need to formally define the

type system (although still need to define

the dynamic semantics somehow)

Similarities to Ocaml

• Uniform model: everything is an object,

including functions

• Can pass functions around just as with

objects

• Supports functional programming style

with map and fold

Let’s fire it up!

• Ok, let’s give it a try...

• See py file for the rest...

