
Next: Variables

Variables and Bindings

Q: How to use variables in ML ?

Q: How to “assign” to a variable ?

let x = e;;

“Bind the value of expression e

to the variable x”

let x = 2+2;;

val x : int = 4

Variables and Bindings

let x = 2+2;;

val x : int = 4

let y = x * x * x;;

val y : int = 64

let z = [x;y;x+y];;

val z : int list = [4;64;68]

Later declared expressions can use x

– Most recent “bound” value used for evaluation

Sounds like C/Java ?

NO!

Environments (“Phone Book”)

How ML deals with variables

• Variables = “names”

• Values = “phone number”

x 4 : int

y 64 : int

z [4;64;68] : int list

x 8 : int

Environments and Evaluation

ML begins in a “top-level” environment

• Some names bound

let x = e;;

ML program = Sequence of variable bindings

Program evaluated by evaluating bindings in order

1. Evaluate expr e in current env to get value v : t

2. Extend env to bind x to v : t

(Repeat with next binding)

Environments

“Phone book”

• Variables = “names”

• Values = “phone number”

1. Evaluate:

Find and use most recent value of variable

2. Extend:

Add new binding at end of “phone book”

let x = 2+2;;

val x : int = 4

let y = x * x * x;;

val y : int = 64

let z = [x;y;x+y];;

val z : int list = [4;64;68]

let x = x + x ;;

val x : int = 8

Example

x 4 : int

y 64 : int

z [4;64;68] : int list

x 4 : int

y 64 : int

x 4 : int

x 4 : int

y 64 : int

z [4;64;68] : int list

x 8 : intNew binding!

Environments

1. Evaluate: Use most recent bound value of var

2. Extend: Add new binding at end

How is this different from C/Java’s “store” ?

let x = 2+2;;

val x : int = 4

let f = fun y -> x + y;

val f : int -> int = fn

let x = x + x ;

val x : int = 8

f 0;

val it : int = 4

x 4 : int

New binding:

• No change or mutation

• Old binding frozen in f

x 4 : int

f fn <code, >: int->int

Environments

1. Evaluate: Use most recent bound value of var

2. Extend: Add new binding at end

How is this different from C/Java’s “store” ?

x 4 : int

x 4 : int

f fn <code, >: int->int

x 8 : int

x 4 : int

f fn <code, >: int->int

let x = 2+2;;

val x : int = 4

let f = fun y -> x + y;

val f : int -> int = fn

let x = x + x ;

val x : int = 8

f 0;

val it : int = 4

Environments

1. Evaluate: Use most recent bound value of var

2. Extend: Add new binding at end

How is this different from C/Java’s “store” ?

x 4 : int

f fn <code, >: int->int

x 8 : int

Binding used to eval (f …)

Binding for subsequent x

let x = 2+2;;

val x : int = 4

let f = fun y -> x + y;

val f : int -> int = fn

let x = x + x ;

val x : int = 8

f 0;

val it : int = 4

Cannot change the world

Cannot “assign” to variables

• Can extend the env by adding a fresh binding

• Does not affect previous uses of variable

Environment at fun declaration frozen inside fun “value”

• Frozen env used to evaluate application (f …)

Q: Why is this a good thing ?

let x = 2+2;;

val x : int = 4

let f = fun y -> x + y;;

val f : int -> int = fn

let x = x + x ;;

val x : int = 8;

f 0;;

val it : int = 4

x 4 : int

f fn <code, >: int->int

x 8 : int

Binding used to eval (f …)

Binding for subsequent x

Cannot change the world

Q: Why is this a good thing ?

A: Function behavior frozen at declaration

• Nothing entered afterwards affects function

• Same inputs always produce same outputs

– Localizes debugging

– Localizes reasoning about the program

– No “sharing” means no evil aliasing

Examples of no sharing

Remember: No addresses, no sharing.

• Each variable is bound to a “fresh instance” of a value

Tuples, Lists …

• Efficient implementation without sharing ?

• There is sharing and pointers but hidden from you

• Compiler’s job is to optimize code

• Efficiently implement these “no-sharing” semantics

• Your job is to use the simplified semantics

• Write correct, cleaner, readable, extendable systems

Recap: Environments

“Phone book”

• Variables = “names”

• Values = “phone number”

1. Evaluate:

Find and use most recent value of variable

2. Extend: let x = e ;;

Add new binding at end of “phone book”

Next: Functions

Expressions Values

Types

Functions

Functions are values, can bind using let

let fname = fun x -> e ;;

Problem: Can’t define recursive functions !

• fname is bound after computing rhs value

• no (or “old”) binding for occurences of fname inside e

let rec fname x = e ;;

Occurences of fname inside e bound to “this” definition

let rec fac x = if x<=1 then 1 else x*fac (x-1)

expr

Functions Type

f : T1 -> T2

F takes a value of type T1

and returns a value of type T2

Functions Values

Two questions about function values:

What is the value:

1. … of a function ?

2. … of a function “application” (call) ? (e1 e2)

of functions: ClosuresValues

• “Body” expression not evaluated until application

– but type-checking takes place at compile time

– i.e. when function is defined

• Function value =

– <code + environment at definition>

– “closure”

let x = 2+2;;

val x : int = 4

let f = fun y -> x + y;;

val f : int -> int = fn

let x = x + x ;;

val x : int = 8

f 0;;

val it : int = 4

x 4 : int

f fn <code, >: int->int

x 8 : int

Binding used to eval (f …)

Binding for subsequent x

of function applicationValues

Application: fancy word for “call”

• “apply” the argument e2 to the (function) e1

Application Value:

1. Evaluate e1 in current env to get (function) v1

– v1 is code + env

– code is (formal x + body e) , env is E

2. Evaluate e2 in current env to get (argument) v2

3. Evaluate body e in env E extended by binding x to v2

(e1 e2)

Example 1

let x = 1;;

let f y = x + y;;

let x = 2;;

let y = 3;;

f (x + y);;

Example 1

let x = 1;;

let f y = x + y;;

let x = 2;;

let y = 3;;

f (x + y);;

Example 2

let x = 1;;

let f y =

let x = 2 in

fun z -> x + y + z

;;

let x = 100;;

let g = (f 4);;

let y = 100;;

(g 1);;

Example 2

let x = 1;;

let f y =

let x = 2 in

fun z -> x + y + z

;;

let x = 100;;

let g = (f 4);;

let y = 100;;

(g 1);;

Example 3

let f g =

let x = 0 in

g 2

;;

let x = 100;;

let h y = x + y;;

f h;;

Static/Lexical Scoping

• For each occurrence of a variable,

– Unique place in program text where variable defined

– Most recent binding in environment

• Static/Lexical: Determined from the program text

– Without executing the programy

• Very useful for readability, debugging:

– Don’t have to figure out “where” a variable got assigned

– Unique, statically known definition for each occurrence

Alternative: dynamic scoping

let x = 100

let f y = x + y

let g x = f 0

let z = g 0

(* value of z? *)

