Next

- More on recursion
- Higher-order functions
- taking and returning functions
- Along the way, will see map and fold

Tail Recursion: Factorial

let rec fact $\mathrm{n}=$
if $\mathrm{n}<=0$
then 1
else n * fact (n-1); ;

How does it execute?

let rec fact $n=$
if $\mathrm{n}<=0$
then 1
else n * fact ($\mathrm{n}-1$); ;
fac 3; ;

Tail recursion

- Tail recursion:
- recursion where all recursive calls are immediately followed by a return
- in other words: not allowed to do anything between recursive call and return

Tail recursive factorial

let fact $x=$

Tail recursive factorial

let fact $\mathrm{x}=$
let rec helper x curs =
if $x<=0$
then curs
else helper (x - 1) (x * curry)
in
helper x 1; ;

How does it execute?

```
let fact x =
    let rec helper x curr =
        if x <= 0
        then curr
        else helper (x - 1) (x * curr)
    in
        helper x 1;;
fact 3;;
```


Tail recursion

- Tail recursion:
- for each recursive call, the value of the recursive call is immediately returned
- in other words: not allowed to do anything between recursive call and return
- Why do we care about tail recursion?
- it turns out that tail recursion can be optimized into a simple loop

Compiler can optimize!

Tail recursion summary

- Tail recursive calls can be optimized as a jump
- Part of the language specification of some languages (ie: you can count on the compiler to optimize tail recursive calls)

max function

let $\max x y=$ if $x<y$ then y else $x ;$;
(* return max element of list 1 *)
let list max $1=$

max function

let $\max x y=$ if $x<y$ then y else $x ;$
(* return max element of list 1 *)
let list max $1=$
let rec helper curs $1=$ match 1 with

$$
\text { [] }->\text { cure }
$$

| h::t -> helper (max eur h) t
in
helper 0 l; ;

concat function

(* concatenate all strings in a list *)
let concat $1=$

concat function

(* concatenate all strings in a list *)
let concat $1=$
let rec helper curs $1=$
match 1 with
[] -> eur
| h::t -> helper (curs ^ h) t
in
helper "" l;

What's the pattern?

let list_max $1=$
let rec helper curs $1=$ match 1 with
[] $->$ curs
| h::t -> helper (max h curs) t
in helper 0 l;
let concat $1=$
let rec helper curs $1=$
match 1 with
[] -> eur
| h::t $->$ helper (curs $\wedge h$) t
in helper "" l;

fold, the general helper func!

(* to help us see the pattern: *)
let list_max $1=$
let rec helper curr $1=$
match l with
[] -> curr
| h::t -> helper (max h curr) t
in helper 0 l; ;
(* fold, the coolest function there is! *)
let rec fold f curr $1=$

fold

(* fold, the coolest function there is! *)
let rec fold f curr $1=$
match 1 with
[] -> curr
| h::t -> fold f (f curr h) t; ;
(* fold, the coolest function there is! *)
let rec fold f cure $1=$
match 1 with
[] $->$ curs
| h::t -> fold ff eur h) $t ;$;

Examples of fold

let list_max =
let concat $=$
let multiplier =

Examples of fold

let list_max = fold max $0 ;$;
let concat $=$ fold (^) ""; ;
let multiplier $=$ fold (*) 1; ;

Examples of fold

> let fact $\mathrm{n}=$ multiplier (interval 1 n); ;

Notice how all the recursion is buried inside two functions: interval and fold!

Examples of fold

let cons $\mathrm{x} y=\mathrm{y}: \mathbf{x}$; ;
let $f=$ fold cons [];
(* same as:
let $f 1=$ fold cons [] 1 *)

Examples of fold

```
let cons x y = y::x;;
let f = fold cons [];;
(* same as:
    let f l = fold cons [] l *)
```


More recursion: interval

(* return a list that contains the integers i through j inclusive *)
let rec interval i j =

interval

(* return a list that contains the integers i through j inclusive *)
let rec interval i j =
if i > j
then []
else i::(interval (i+1) j); ;

interval function with init fn

(* return a list that contains the elements $f(i), f(i+1), \ldots f(j)$ *)
let rec interval_init i j f =

interval function with init fin

(* return a list that contains the elements $f(i), f(i+1), \ldots f(j)$ *)
let rec interval_init i j f =
if i > j
then []
else (f i)::(interval_init (i+1) j f); ;

interval function again

(* our regular interval function in terms of the one with the init function *)
let rec interval i j =

interval function again

(* our regular interval function in terms of the one with the init function *)
let rec interval i j =
interval_init i j (fun x -> x); ;

Interval function yet again!

(* let's change the order of parameters... *)
let rec interval_init fin $=$
if il
then []
else (fi)::(interval_init f (i+1) j); ;
(* now can use currying to get interval function! *) let interval = interval_init (fun x -> x) ; ;

Function Currying

In general, these two are equivalent:

$$
\text { let } f=\text { fun } x 1->\text {... -> fun xn } \rightarrow \text { e }
$$

$$
\text { let } \mathrm{f} \text { x1 ... } \mathrm{xn}=e
$$

Multiple argument functions by returning a function that takes the next argument

- Named after a person (Haskell Curry)

Function Currying vs tuples

fn definition
 fn call

Tuple version: let $f(x 1, \ldots, x n)=e f(x 1, \ldots, x n)$
fn definition
fn call
Curried version:

$$
\text { let } \mathrm{f} x 1 \ldots \mathrm{xn}=e
$$

f x1 ... xn

Function Currying vs tuples

Consider the following:

$$
\text { let lt } x y=x<y \text {; }
$$

Could have done: let lt $(x, y)=x<y$;

- But then no "testers" possible

In general: Currying allows you to set just the first n params (where n smaller than the total number of params)

map

(* return the list containing $f(e)$ for each element e of 1 *)
let rec map $f 1=$

map

(* return the list containing $f(e)$ for each element e of 1 *)
let rec map $f 1=$

$$
\begin{aligned}
& \text { match } 1 \text { with } \\
& \text { [] } \rightarrow \text { [] } \\
& \mid h:: t \rightarrow(f h)::(\operatorname{map} f t) ; ;
\end{aligned}
$$

map

let incr $\mathrm{x}=\mathrm{x}+1$; ;
let map_incr = map incr; ; map_incr (interval (-10) 10); ;

composing functions

$(\mathrm{f} \circ \mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))$

(* return a function that given an argument \mathbf{x} applies f 2 to x and then applies f 1 to the result*)
let compose f1 f2 =

composing functions

$(\mathrm{f} \circ \mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))$

(* return a function that given an argument \mathbf{x} applies f 2 to x and then applies f 1 to the result*)
let compose fl fl = fun x -> (fl (fl x)); ;
(* another way of writing it *)
let compose fl fl $x=$ fl (fl x); ;

Higher-order functions!

```
let map_incr_2 = compose map_incr map_incr;;
map_incr_2 (interval (-10) 10);;
let map_incr_3 = compose map_incr map_incr_2;;
map_incr_3 (interval (-10) 10);;
let map_incr_3_pos = compose pos_filer map_incr_3;;
map_incr_3_pos (interval (-10) 10);;
(compose map_incr_3 pos_filer) (interval (-10) 10);;
```


Higher-order functions!

```
let map_incr_2 = compose map_incr map_incr;;
map_incr_2 (interval (-10) 10);;
let map_incr_3 = compose map_incr map_incr_2;;
map_incr_3 (interval (-10) 10);;
let map_incr_3_pos = compose pos_filer map_incr_3;;
map_incr_3_pos (interval (-10) 10);;
(compose map_incr_3 pos_filer) (interval (-10) 10);;
```


Instead of manipulating lists, we are manipulating the list manipulators!

Exercise 1

```
let rec filter f l =
    match l with
    | [] -> []
    | h::t -> let t' = filter f t in
    if f h then h::t' else t'
```

let neg $\mathrm{f} \mathbf{x}=\operatorname{not}(\mathrm{f} \mathbf{x})$
let partition $f 1=(f i l t e r f l$, filter (neg f) 1)
This implementation is not ideal, since it unnecessarily processes the list twice. Rewrite partition so that it is a single call to fold_left, so the input list is processed only once. Recall:
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

Exercise 1

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
let partition f l =

Exercise 1 Solution

```
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
```

let partition f l =
let fold_fn (pass,passnot) $x=$
if $f x$ then (pass@[x], passnot)
else (pass, passnot@[x])
in
List.fold_left fold_fn ([],[]) l; ;

Exercise 2

```
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
val map : ('a -> 'b) -> 'a list -> 'b list
```

Implement map using fold:
let $\operatorname{map} \mathrm{f}=$

Exercise 2 Solution

```
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
val map : ('a -> 'b) -> 'a list -> 'b list
```

Implement map using fold:
let $\operatorname{map} \mathrm{f}=$
List.fold_left (fun acc x -> acc@[f x]) [] l

Benefits of higher-order functions

Identify common computation "patterns"

- Iterate a function over a set, list, tree ...
- Accumulate some value over a collection

Pull out (factor) "common" code:

- Computation Patterns
- Re-use in many different situations

Funcs taking/returning funcs

Higher-order funcs enable modular code

- Each part only needs local information

Data Structure Client Uses list

Uses meta-functions: map, fold, filter With locally-dependent funs (lt h), square etc. Without requiring Implement. details of data structure

Data Structure
 Library list

Provides meta-functions:
map,fold,filter
to traverse, accumulate over
lists, trees etc.
Meta-functions don't need client info

Different way of thinking

"Free your mind"
 -Morpheus

- Different way of thinking about computation
- Manipulate the manipulators

