
1

Next

• More on recursion

• Higher-order functions

– taking and returning functions

• Along the way, will see map and fold

2

Tail Recursion: Factorial

let rec fact n =

if n<=0

then 1

else n * fact (n-1);;

3

How does it execute?

let rec fact n =

if n<=0

then 1

else n * fact (n-1);;

fac 3;;

4

Tail recursion

• Tail recursion:

– recursion where all recursive calls are

immediately followed by a return

– in other words: not allowed to do anything

between recursive call and return

5

Tail recursive factorial

let fact x =

6

Tail recursive factorial

let fact x =

let rec helper x curr =

if x <= 0

then curr

else helper (x - 1) (x * curr)

in

helper x 1;;

7

How does it execute?

let fact x =

let rec helper x curr =

if x <= 0

then curr

else helper (x - 1) (x * curr)

in

helper x 1;;

fact 3;;

8

Tail recursion

• Tail recursion:

– for each recursive call, the value of the

recursive call is immediately returned

– in other words: not allowed to do anything

between recursive call and return

• Why do we care about tail recursion?

– it turns out that tail recursion can be

optimized into a simple loop

9

Compiler can optimize!

let fact x =

let rec helper x curr =

if x <= 0

then curr

else helper (x - 1) (x * curr)

in

helper x 1;;

fact(x) {

curr := 1;

while (1) {

if (x <= 0)

then { return curr }

else { x := x – 1; curr := (x * curr) }

}

recursion! Loop!

10

Tail recursion summary

• Tail recursive calls can be optimized as a

jump

• Part of the language specification of

some languages (ie: you can count on the

compiler to optimize tail recursive calls)

11

max function

let max x y = if x < y then y else x;;

(* return max element of list l *)

let list_max l =

12

max function

let max x y = if x < y then y else x;;

(* return max element of list l *)

let list_max l =

let rec helper curr l =

match l with

[] -> curr

| h::t -> helper (max curr h) t

in

helper 0 l;;

13

concat function

(* concatenate all strings in a list *)

let concat l =

14

concat function

(* concatenate all strings in a list *)

let concat l =

let rec helper curr l =

match l with

[] -> curr

| h::t -> helper (curr ^ h) t

in

helper "" l;;

15

What’s the pattern?
let list_max l =

let rec helper curr l =

match l with

[] -> curr

| h::t -> helper (max h curr) t

in helper 0 l;;

let concat l =

let rec helper curr l =

match l with

[] -> curr

| h::t -> helper (curr ^ h) t

in helper "" l;;

16

fold, the general helper func!

(* fold, the coolest function there is! *)

let rec fold f curr l =

(* to help us see the pattern: *)

let list_max l =

let rec helper curr l =

match l with

[] -> curr

| h::t -> helper (max h curr) t

in helper 0 l;;

17

fold

(* fold, the coolest function there is! *)

let rec fold f curr l =

match l with

[] -> curr

| h::t -> fold f (f curr h) t;;

18

fold

(* fold, the coolest function there is! *)

let rec fold f curr l =

match l with

[] -> curr

| h::t -> fold f (f curr h) t;;

19

Examples of fold

let concat =

let multiplier =

let list_max =

20

Examples of fold

let concat = fold (^) "";;

let multiplier = fold (*) 1;;

let list_max = fold max 0;;

21

Examples of fold

let fact n =

multiplier (interval 1 n);;

Notice how all the recursion is

buried inside two functions:

interval and fold!

22

Examples of fold

let cons x y = y::x;;

let f = fold cons [];;

(* same as:

let f l = fold cons [] l *)

23

Examples of fold

let cons x y = y::x;;

let f = fold cons [];;

(* same as:

let f l = fold cons [] l *)

24

More recursion: interval

(* return a list that contains

the integers i through j

inclusive *)

let rec interval i j =

25

interval

(* return a list that contains

the integers i through j

inclusive *)

let rec interval i j =

if i > j

then []

else i::(interval (i+1) j);;

26

interval function with init fn

(* return a list that contains the

elements f(i), f(i+1), ... f(j) *)

let rec interval_init i j f =

27

interval function with init fn

(* return a list that contains the

elements f(i), f(i+1), ... f(j) *)

let rec interval_init i j f =

if i > j

then []

else (f i)::(interval_init (i+1) j f);;

28

interval function again

(* our regular interval function in terms

of the one with the init function *)

let rec interval i j =

29

interval function again

(* our regular interval function in terms

of the one with the init function *)

let rec interval i j =

interval_init i j (fun x -> x);;

30

Interval function yet again!

(* let's change the order of parameters... *)

let rec interval_init f i j =

if i > j

then []

else (f i)::(interval_init f (i+1) j);;

(* now can use currying to get interval function! *)

let interval = interval_init (fun x -> x);;

31

Function Currying

In general, these two are equivalent:

let f = fun x1 -> … -> fun xn -> e

let f x1 … xn = e

Multiple argument functions by

returning a function that takes the next argument

• Named after a person (Haskell Curry)

32

Function Currying vs tuples

let f (x1,…,xn) = e

let f x1 … xn = e

Tuple version:

Curried

version:

f (x1,…,xn)

fn definition fn call

f x1 … xn

fn definition fn call

33

Could have done:

• But then no “testers” possible

In general: Currying allows you to set just the first n

params (where n smaller than the total number of

params)

Function Currying vs tuples

let lt x y = x < y;

Consider the following:

let lt (x,y) = x<y;

34

map

(* return the list containing f(e) for each

element e of l *)

let rec map f l =

35

map

(* return the list containing f(e) for each

element e of l *)

let rec map f l =

match l with

[] -> []

| h::t -> (f h)::(map f t);;

36

map

let incr x = x+1;;

let map_incr = map incr;;

map_incr (interval (-10) 10);;

37

composing functions

(* return a function that given an argument

x applies f2 to x and then applies f1 to

the result*)

let compose f1 f2 =

(f o g) (x) = f(g(x))

38

composing functions

(* return a function that given an argument

x applies f2 to x and then applies f1 to

the result*)

let compose f1 f2 = fun x -> (f1 (f2 x));;

(* another way of writing it *)

let compose f1 f2 x = f1 (f2 x);;

(f o g) (x) = f(g(x))

39

Higher-order functions!

let map_incr_2 = compose map_incr map_incr;;

map_incr_2 (interval (-10) 10);;

let map_incr_3 = compose map_incr map_incr_2;;

map_incr_3 (interval (-10) 10);;

let map_incr_3_pos = compose pos_filer map_incr_3;;

map_incr_3_pos (interval (-10) 10);;

(compose map_incr_3 pos_filer) (interval (-10) 10);;

40

Higher-order functions!

let map_incr_2 = compose map_incr map_incr;;

map_incr_2 (interval (-10) 10);;

let map_incr_3 = compose map_incr map_incr_2;;

map_incr_3 (interval (-10) 10);;

let map_incr_3_pos = compose pos_filer map_incr_3;;

map_incr_3_pos (interval (-10) 10);;

(compose map_incr_3 pos_filer) (interval (-10) 10);;

Instead of manipulating lists, we are

manipulating the list manipulators!

41

Exercise 1
let rec filter f l =

match l with

| [] -> []

| h::t -> let t’ = filter f t in

if f h then h::t’ else t’

let neg f x = not (f x)

let partition f l = (filter f l, filter (neg f) l)

This implementation is not ideal, since it

unnecessarily processes the list twice. Rewrite

partition so that it is a single call to fold_left, so

the input list is processed only once. Recall:

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

42

Exercise 1
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

let partition f l =

43

Exercise 1 Solution
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

let partition f l =

let fold_fn (pass,passnot) x =

if f x then (pass@[x], passnot)

else (pass, passnot@[x])

in

List.fold_left fold_fn ([],[]) l;;

44

Exercise 2
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

val map : ('a -> 'b) -> 'a list -> 'b list

Implement map using fold:

let map f l =

45

Exercise 2 Solution
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

val map : ('a -> 'b) -> 'a list -> 'b list

Implement map using fold:

let map f l =

List.fold_left (fun acc x -> acc@[f x]) [] l

46

Benefits of higher-order functions

Identify common computation “patterns”

• Iterate a function over a set, list, tree …

• Accumulate some value over a collection

Pull out (factor) “common” code:

• Computation Patterns

• Re-use in many different situations

47

Higher-order funcs enable modular code

• Each part only needs local information

Funcs taking/returning funcs

Data
Structure
Library
list

Data
Structure

Client
Uses list

Provides meta-functions:

map,fold,filter

to traverse, accumulate over

lists, trees etc.

Meta-functions don’t need client

info

Uses meta-functions:

map,fold,filter

With locally-dependent funs

(lt h), square etc.

Without requiring Implement.

details of data structure

48

Different way of thinking

“Free your mind”

-Morpheus

• Different way of thinking about

computation

• Manipulate the manipulators

