
CSE 130-230 : Fall 2018

Programming Languages

Sorin Lerner

UC San Diego

Hi! My name is Sorin

Why study PL ? (discussion)

Why study PL ?

“A different language is a different vision of life”

- Fellini

- Hypothesis:

Programming language shapes programming thought

- Characteristics of a language affect how ideas can

be expressed in the language

Course Goals

“Free your mind”

-Morpheus

You will learn several new

- languages and constructs

- ways to describe and organize computation

Yes, you can do that in Java/Assembly but …

So what does studying PL buy me?

Enables you to create software that is

• Readable

• Correct

• Extendable

• Modifiable

• Reusable

So what does studying PL buy me?

Will help you learn new languages

• There was no Java (C#) 15 (10) years ago

• Will learn the anatomy of a PL

• Fundamental building blocks of languages

reappear in different guises in different

languages and different settings

• Re-learn the languages you already know

So what does studying PL buy me?

Enables you to design new languages

“who, me?”

Buried inside any extensible system is a PL

• Emacs: E-Lisp

• Word, Powerpoint: VBScript

• Quake: QuakeC

• Facebook: FBML, FBJS

• SQL, Renderman, LaTeX, XML…

So what does studying PL buy me?

Enables you to design new languages

“who, me?”

Companies develop general purpose PLs/paradigm!

• Google: MapReduce

• Mozilla: Rust

• RedHat: Ceylon

• Nvidia: CUDA

So what does studying PL buy me?

Enables you to better choose the right language

“but isn’t that decided by
– libraries,

– standards,

– and my boss ?”

Yes. Chicken-and-egg.

My goal: educate tomorrow’s tech leaders & bosses

So you’ll make considered, informed choices

So what does studying PL buy me?

Makes you look at things in different ways,

think outside of the box

Knowing language paradigms other than

traditional ones will give you new tools to

approach problems, even if you are

programming in Java

PL Dimensions

• Wide variety of programming languages

• How do they differ?

• along certain dimensions...

• What are these dimensions?

PL Dimensions (discussion)

Dimension: Syntax

• Languages have different syntax

– But the difference in syntax can be

superficial

– C# and Java have different syntax, but are

very similar

• In this class, will look beyond superficial

syntax to understand the underlying

principles

Dimension: Computation model

• Functional: Lisp, OCaml, ML

• Imperative: Fortran, Pascal, C

• Object oriented: Smalltalk, C++, Java, C#

• Constraint-based: Prolog, CLP(R)

Dimension: Memory model

• Explicit allocation-deallocation: C, C++

• Garbage collection: Smalltalk, Java, C#

• Regions: safe versions of C (e.g. Cyclone)

– allocate in a region, deallocate entire region

at once

– more efficient than GC, but no dangling ptrs

Dimension: Typing model

• Statically typed: Java, C, C++, C#

• Dynamically typed: Lisp, Scheme, Perl,

Smalltalk

• Strongly typed (Java) vs. weakly typed

(C, C++)

Dimension: Execution model

• Compiled: C, C++

• Interpreted: Perl, shell scripting PLs

• Hybrid: Java

• Is this really a property of the language?

Or the language implementation?

• Depends...

So many dimensions

• Yikes, there are so many dimensions!

• How to study all this!

• One option: study each dimension in turn

• In this course: explore the various

dimensions by looking at a handful of PLs

Course material

Outline:

1. Functional, OCaml, 4 weeks

2. Logic, Prolog, 1 weeks

3. OO, Python, 4 weeks

No recommended Text:

• Online lecture notes

• Resources posted on webpage

• Pay attention to lecture and section!

Course Mechanics

https://ucsd-pl.github.io/cse-130-230/fa18/

(Google “Sorin Lerner”, follow “Teaching Now”)

Nothing printed, everything on Webpage!

Piazza: sign-up using link on web page

TAs: See web page

Tutors: See web page

http://www.cs.ucsd.edu/classes/fa17/cse130-a/

Requirements and Grading

• Prog. Assignments (7): 30%

• Midterm (only cheat-sheet): 35%

• Final (only cheat-sheet): 35%

Weekly Programming Assignments

Schedule up on webpage

Deadline Extension:

– Four “late days”, used as “whole unit”

– 5 mins late = 1 late day

– Plan ahead, no other extensions

PA #1 online, due Oct 5th

Academic Integrity

• Programming Assignments done ALONE

• We use plagiarism detection software

– Have code from all previous classes

– Have code from public repos

– MOSS is fantastic at finding plagiarism

– Make your repo private, or you will be found
responsible

• Cases referred to AI office

• See https://ucsd-pl.github.io/cse-130-230/fa18/grading.html

Weekly Programming Assignments

Unfamiliar languages

+ Unfamiliar environments

Start Early!

Forget Java, C, C++ …

… other 20th century PLs

Weekly Programming Assignments

Don’t complain

… that Ocaml is hard

… that Ocaml is @!#@%

It is not.

Free

Immerse yourself in new language

your mind.

Enough with the small talk

?

Say hello to OCaml
void sort(int arr[], int beg, int end){

if (end > beg + 1){

int piv = arr[beg];

int l = beg + 1;

int r = end;

while (l != r-1){

if(arr[l] <= piv)

l++;

else

swap(&arr[l], &arr[r--]);

}

if(arr[l]<=piv && arr[r]<=piv)

l=r+1;

else if(arr[l]<=piv && arr[r]>piv)

{l++; r--;}

else if (arr[l]>piv && arr[r]<=piv)

swap(&arr[l++], &arr[r--]);

else

r=l-1;

swap(&arr[r--], &arr[beg]);

sort(arr, beg, r);

sort(arr, l, end);

}

}
Quicksort in C

Quicksort in Ocaml

let rec sort l =

match l with [] -> []

|(h::t) ->

let(l,r)= List.partition ((<=) h) t in

(sort l)@h::(sort r)

Why readability matters…

sort=:(($:@(<#[),(=#[),$:@(>#[))({~ ?@#))^: (1:<#)

Quicksort in J

Say hello to OCaml

Quicksort in OCaml

let rec sort l =

match l with [] -> []

|(h::t) ->

let (l,r)= List.partition ((<=) h) t in

(sort l)@h::(sort r)

Plan (next 4 weeks)

1. Fast forward

• Rapid introduction to what’s in OCaml

2. Rewind

3. Slow motion

• Go over the pieces individually

