Name:

ID :

CSE 130, Fall 2013: Final Examination
December 9th, 2013

Do not start the exam until you are told to.

1. 20 Points
This is a open-book, open-notes exam, but with
no computational devices allowed (such as calcula-
tors/cellphones/laptops). 9. 90 Points
Do not look at anyone else’s exam. Do not talk to
anyone but an exam proctor during the exam.

3. 25 Points
Write your answers in the space provided.
Wherever it gives a line limit for your answer, write 4. 20 Points
no more than the specified number of lines. The rest
will be 1gnored.
Work out your solution in blank space or scratch pa- 5. 30 Points
per, and only put your answer in the answer blank
given.

TOTAL 115 Points

Good luck!

1. [20 points] In this problem you will implement insertion sort in OCaml.

a. [10 points] First, you will implement insertion into a sorted list. Given a sorted list 1 and an integer
i, (insert 1 1) returns a sorted list which contains all the elements of 1, and in addition also contains the
integer i (note that duplicates are allowed). For example:

insert [] 10;;

- : int list = [10]

insert [1;2;3;4] 3;;

- : int list = [1; 2; 3; 3; 4]

insert [10;15;20;30] 40;;

- : int list = [10; 15; 20; 30; 40]
insert [10;15;20;30] 5;;

- : int list = [5; 10; 15; 20; 30]

Fill in the code for insert below:

let rec insert 1 i =

b. [10 points | Now you will implement insertion sort using fold_left. Recall that the type of fold_left
is given below:

fold_left: (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a

Fill in the implementation below using fold_left:

let insertion_sort =

2.

[20 points]| Consider the following data type for representing arigthmetic expressions with variables:

type expr =
| Var of string
| Const of int
| Plus of expr * expr

For example

e (Plus (Const 4, Const 7)) respresents 4+7
e (Plus (Const 4, Var "a")) respresents 4+a
e (Plus (Var "a", Var "b")) respresnts a+b
e (Plus (Plus (Comst 20, Const 10), Var "a")) respresnts (20+10)+a
Write a function simpl: expr -> expr which simplifies additions of constants. In particular, given an expres-

sion e, (simpl e) returns a new expression which is equivalent to e, but in which all additions of constants
have been computed. For example:

(* 4+7 simplifies to 11 *)
simpl (Plus (Const 4, Const 7));;
- : expr = Const 11

(* (20+10)+a simplifies to 30+a *)
simpl (Plus (Plus (Const 20, Comst 10), Var "a"));;
- : expr = Plus (Const 30, Var "a")

(* (4+10)+7 simplifies to 21

More details: 4+10 simplifies to constant 14, then 14+7 simplifies to 21 *)
simpl (Plus (Plus (Const 4, Comnst 10), Const 7));;
- : expr = Const 21

(* 4+a simplifies to 4+a -- nothing to simplify *)
simpl (Plus (Const 4, Var "a"));;
- : expr = Plus (Const 4, Var "a")

(*x atb simplifies to at+b -- nothing to simplify *)
simpl (Plus (Var "a", Var "b"));;
- : expr = Plus (Var "a", Var "b")

(x (a+10)+7 simplifies to (a+10)+7 -- nothing to simplify because a+10 doesn’t simplify *)
simpl (Plus (Plus (Var "a", Comst 10), Const 7));;
- : expr = Plus (Plus (Var "a", Const 10), Const 7)

Fill in the code below for simpl (note that in the code below, ”_” is just the "else” case — there is nothing for
you to fill in there).
let rec simpl e =

match e with

(* case for plus: *)

__ ->
let el = _____ ___ _ _ _ __ in
let 2’ = ______ _ __ _ _ __ _ o __ in
match (el’,e2’) with
->

(* all other cases: *)

3. [25 points | You will use list comprehension to implement dictionaries. A dictionary here will be a list of
pairs, where each pair contains a key and a value. Unlike in regular Python dictionaries, a given key can appear
multiple times in the dictionary. All operations in this question will be functional, meaning that the
original dictionary is left unmodified, and a new dictionary is returned.

a. [5 points | First, you will implement a lookup function. Given a dictionary d and key k, lookup(d,k)
returns the list of all values associated with the given key. For example:

>>> d = [(l’a", 10) s (llb"’ 20) s ("C", 30)’ (l’all’ 40)]
>>> lookup(d,"a")

[10, 40]

>>> lookup(d,"b")
[20]

>>> lookup(d,"c")
[30]

>>> lookup(d,"d")
(]

Fill in the implementation of lookup below:

def lookup(d,k):

return [

b. [5 points] You will now implement the update operator. Given a dictionary d, a key k and a new value
v, update(d,k,v) returns a new dictionary in which all occurrences of the key k have been updated to
have the value v. Note: (1) if there are multiple occurrences of the key k, they are all updated (2) if there
are no occurrences of key k, nothing is updated (3) the update function returns a new dictionary — it does
not update the one that is passed in. For example:

>>> 4 = [(nan, 10), ("b", 20)’ ("C", 30)’ (uau’ 40)]
>>> update(d, "a", "CSE130")

[(’a’, °CSE130’), (’b’, 20), (c’, 30), (*a’, ’CSE130’)]
>>> update(d, "b", "CSE130")

[CCa’, 10), (°b’, ’CSE130’), (’c’, 30), (’a’, 40)]

>>> update(d, "d", "CSE130")

[(CCa’, 10), Cb’, 20), (C’c’, 30), (’a’, 40)]

In your solution, you may find the following function useful:

def cond(b, t, f):
if b: return t
else: return f

Fill in the solution below:

def update(d,k,v):

return [

c. [5 points] You will now implement deletion. Given a dictionary d and a key k, delete(d,k,v) returns
a new dictionary in which all entries for the key k have been removed.

Fill in the implementation delete below:

def delete(d,k):

return [

d. [5 points | You will now implement addition. Given a dictionary d, key k and value v, add(d, k,v) returns
a new dictionary with the additional key-value pair at the end of the list representing the dictionary.

Fill in the implementation of add below:

def add(d,k,v):

return

e. [5 points | You will now implement the update function from part b, but: without using list compre-
hension and without using the helper function cond. You can use other built-in functions if you want,

but you don’t need to.

def update(d,k,v):

4. [20 points] In this question you will implement a decorator in_range, which you can assume will only be
applied to functions that take integers and return integers. Given an integer i and a pair range of integers,
the decorator in_range (i, range) adds the following behavior to the decorated function:

1. If i == -1, the decorated function should throw an exception if the return value is not in the given range.

2. If 1 is a valid index into the argument list, the decorated function should throw an exception if the ith
argument is not in the given range.

Here are some examples. Note specifically the strings that are printed out in the exceptions — you need to
replicated this behavior.

>>> @in_range(0, (0,10))
. @in_range(1, (-10,20))
. def plus(a,b): return atb

>>> plus(10,-5)
5

>>> plus(11,3)
Exception: Oth arg 11 too big

>>> plus(-1,3)
Exception: Oth arg -1 too small

>>> plus(2,25)
Exception: 1th arg 25 too big

>>> plus(2,-13)
Exception: 1th arg -13 too small

>>> @in_range(-1, (5,10))
. def plus(a,b): return atb

>>> plus(6,4)
10

>>> plus(3,2)
5

>>> plus(6,5)
Exception: Return value 11 too big

>>> plus(3,1)
Exception: Return value 4 too small

To raise an exception with message s, you should use the command raise Exception(s). For example:

>>> raise Exception("Hello world!")
Exception: Hello world!

Write the implementation of in_range below (use str(x) to return the string representation of x):

5.

[30 points | We are going to encode a graph over cities in Prolog. In particular, 1ink(a,b) represents the
fact that there is a path from city a to city b. For example:

link(san_diego, seattle).
link(seattle, dallas).
link(dallas, new_york).
link(new_york, chicago).
link(new_york, seattle).
link(chicago, boston).
link(boston, san_diego).

a. [5 points] First, write a predicate path_2(A,B) which holds if there is path of length two from A to B.
The path is allowed to have duplicate cities. For example:

1 ?7- path_2(new_york,B).

B = boston ;

B = dallas.

2 7- path_2(A,dallas).
A = san_diego ;

A = new_york ;
false.

Write your implementation of path_2 below:

b. [5 points | Write a predicate path_3(A,B) which holds if there is path of length three from A to B. The
path is allowed to have duplicate cities. For example:

1 7- path_3(A,B).

A = san_diego,

B = new_york ;

A = seattle,

B = chicago ;

A = B, B = seattle ;
A = dallas,

B = boston ;
A
A
B
A
A
B
A

= B, B = dallas ;
= new_york,
= san_diego ;
= B, B = new_york ;
= chicago,
= seattle ;
= boston,
B = dallas.

Write your implementation of path_3 below:

10

c. [10 points | Write a predicate path_N(A,B,N) which holds if there is a path of length N between A and
B. The path is allowed to have duplicate cities, and you can assume that N is greater or equal to 1. For
example:

1 7- path_N(new_york, B, 2).

B = boston ;
B = dallas ;
false.

2 7- path_N(new_york, B, 3).
B = san_diego ;

B = new_york ;

false.

3 7- path_N(A, san_diego, 5).

A = seattle ;
false.

Fill in the implementation of path_N below:

% case for N =1

path_N(A,B,N) :-

% case for N > 1

path_N(A,B,N) :-

11

d. [10 points | Write a predicate path(A,B) which is true if there is a path from A to B, without cycles.
You are allowed to use the built-in predicate member (X,L) which is true if X is an element of the list L.
Fill in implementation of path below.

path(A, B) :- path_helper(A, B, _________________________).

% In path_helper below, Seen is the cities we have see so far, so we
% can avoid cycles.

path_helper (A, B, Seen) :- link(A,B), not(member(B, Seen)).

path_helper(A, B, Seen) :-

link(A,C),

12

