Name:

ID :

CSE 130, Winter 2013: Midterm Examination
Feb 12th, 2012

Do not start the exam until you are told to.

This is a open-book, open-notes exam, but with
no computational devices allowed (such as calcula-

tors/cellphones/laptops).

Do not look at anyone else’s exam. Do not talk to 1. 25 Points
anyone but an exam proctor during the exam.

Write your answers in the space provided. 9. 920 Points

Wherever it gives a line limit for your answer, write

no more than the specified number of lines. The rest

will be ignored. 3. 10 Points

Work out your solution in blank space or scratch pa-
per, and only put your answer in the answer blank TOTAL 55 Points
given.

The points for each problem are a rough indicator of
the difficulty of the problem.

Good luck!

1. [25 points]
a. [18 points | Consider the following datatype:

type ’a maybe =
| None
| Some of ’a

In this problem you are going to write first : (’a -> bool) -> ’a list -> ’a maybe. Given a
“tester” function f and a list 1, (first f 1) returns the first element of the list 1 for which f returns
true. If there is no element in the list for which f returns true, then first returns None. If there are
multiple elements in the list for which f returns true, then the first such element is returned. For example:

let even x = (x mod 2 = 0);;

val even : int -> bool = <fun>

first even [1;3;4;5;7;9;11];;

- : int maybe = Some 4

first even [1;2;3;4;5;7;9;10;11];;
- : int maybe = Some 2

first even [1;3;5;7;9;11];;

- : int maybe = None

To implement first, you will use fold_left, whose type is given below:
fold_left: (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a
Fill in the implementation of first below:

let first £ 1 =

in List.fold_left fold_fn base 1

b. [7 points | Now, consider the following code:
#let fabc=1(a=Db+c);;

val f

: int

-> int -> int

-> bool = <fun>

For each expression below, write down what it evaluates to:

first

first

first

first

first

first

first

(=)

(=

(<)

(<)

(<)

(f 1

(f 5

4) [1;2;3;4;5]

10) [1;2;3;4;5]

3) [1;2;3;4;5]

10) [1;2;3;4;5]

0) [1;2;3;4;5]

2) [1;2;3;4;5]

2) [1;2;3;4;5]

2. [20 points]

a. [10 points] You are going to write a function zip : ’a list -> ’b list -> (’a * ’b) list.
Given two lists 11 and 12, (zip 11 12) returns a list containing pairs of corresponding elements from 11
and 12. If lists 11 and 12 have different lengths, the returned list has the same length as the shorted of
the two lists. For example:

zip [1;2;3] [5;6;7];;

- : (int * int) list = [(1, 5); (2, 6); (3, 7T)]

zip [’a’;’b?;°c’] [1;2;3];;

- : (char * int) list = [(’a’, 1); Cb’, 2); (c’, 3)]
zip [’a’] [1;2;3];;

- : (char * int) list = [(’a’, 1)]

zip [’a’;’b’;’c’] [1;2];;

- : (char * int) list = [(’a’, 1); (b’, 2)]

Fill in the implementation of zip below:

let rec zip 11 12 =

match (11,12) with

b. [5 points | Recall the map function, which has type (*a -> ’b) -> ’a list -> ’b list. You will
now write a function map2: (’a -> ’b -> ’c) -> ’a list -> ’b list -> ’c list. Given a function
f and two lists 11 and 12, (map2 £ 11 12) returns a list in which each element is produced by calling £
on the corresponding elements of 11 and 12. For example:

(955

- : int -> int -> int = <fun>
map2 (+) [1;2;3] [4;6;8];;
- : int list = [5; 8; 11]

map2 (-) [1;2;3] [4;6;8];;
- : int list = [-3; -4; -5]
map2 (/) [10;9;4] [2;3;4];;
- : int list = [5; 3; 1]

map2 (+) [1;2] [4;6;8];;

- : int list = [5; 8]

Using map and zip, write the code for map2 below. Note that map2 is not declared as rec so it cannot call
itself. Be careful with currying to make sure that everything typechecks properly.

let map2 £ 11 12 =

c. [5 points] You will now write a function:
map3:(’a -> ’b -> ’c -> ’d) -> ’a list -> ’b list -> ’c list -> ’d list
This function works similarly to map2 but with three lists instead of two. For example:

let add abc=a+b+ c;;

val add : int -> int -> int -> int = <fun>

map3 add [1;2] [3;4] [5;6];;

- : int list = [9; 12]

map3 add [1] [3;4] [5;6];;

- : int list = [9]
Using map and zip, write the code for map3 below. Note again that map3 is not declared as rec so it
cannot call itself. Be careful with currying to make sure that everything typechecks properly.

let map3 f 11 12 13 =

3. [10 points]
You will now write a function unzip: (’a * ’b) list -> ’a list * °’b list. Given a list 1 of pairs
(unzip 1) returns two lists 11 and 12 where 11 contains the first element of each pair in 1 and 12 contains
the second element of each pair in 1. For example:
unzip [(1,2); (3,4); (5,6)];;
- : int list * int list = ([1; 3; 5], [2; 4; 6])
unzip [(Ca’,1); (Cb’,2)];;
- : char list * int list = ([’a’; °’b’], [1; 2]1)
Fill in the implementation of unzip below:

let rec unzip 1 =

match 1 with

