Name:

ID :

CSE 130, Fall 2014: Midterm Examination

Nov 6th, 2014

Do not start the exam until you are told to.

This is a open-book, open-notes exam, but with
no computational devices allowed (such as calcula-
tors/cellphones/laptops).

Do not look at anyone else’s exam. Do not talk to
anyone but an exam proctor during the exam.

Write your answers in the space provided.

Wherever it gives a line limit for your answer, write
no more than the specified number of lines. The rest
will be ignored.

Work out your solution in blank space or scratch pa-
per, and only put your answer in the answer blank
given.

In all exercises, you are allowed to use the “@” op-
erator.

Good luck!

TOTAL

20 Points

20 Points

10 Points

10 Points

60 Points

1. [20 points] Consider the following data type for representing arithmetic expressions with constants, variables
and binary operators:

type expr =
| Const of int
| Var of string
| Op of string * expr * expr;;

For example:

e Op ("+", Var "a", Const 4) represents a+4

e Op ("+", Var "a", Op ("-", Var "b", Const 4)) represents a+(b-4)

a. [10 points | You will write a function rename_var : expr -> string -> string -> expr which
renames variables. In particular, given an expression e, and two variable names nl and n2,
(rename_var e nl n2) returns a new expression in which all occurrences of variable n1 have been re-
placed with variable n2. For example:

rename_var (Op ("+H, Var "a", Const 4)) "a" "
- : expr = Op ("+", Var "b", Const 4)

rename_var (Op ("+", Var "a", Const 4)) "p" nens
- : expr = Op ("+", Var "a", Const 4)

rename_var (Op (||+||’ Dp (n*n’ Var "X", Var uyu)’ Op (u_u’ Var "X", Var "Z"))) gt uyu;;
- : expr = Op (||+n’ Op (Il*ll, Var nyu, Var uyu), Op (u_u, Var nyu’ Var nzn))

Fill in the code below for rename_var:

let rec rename_var e nl n2 =

b. [10 points] You will write a function to_str : expr -> string which takes an expression and returns
a string representation of that expression. For example:

to_str (Op ("+", Var "a", Const 4));;

- : string = "at+4"

to_str (Op ("+", Comnst 10, Op ("+", Const 10, Var "b")));;
- : string = "10+(10+b)"

to-str (Dp (|l+||, Op (ll*ll, Var IIXII’ Var llyll), Dp (ll_ll, Var "X", Var ”Z"))); ;
: string = "(x*xy)+(x-z)"

Carefully note the behavior of parentheses: parentheses are added around binary expressions, except
if the expression is at the top-level, in which case no parentheses are added. In particular, the nested
expressions above, like “10+b” and “x*y”, have parentheses around them, but “a+4” does not have
parentheses, because the expression is at the top-level.

Fill in the code for to_str below. You will want to make use of the built-in OCaml function
string_of_int : int -> string which converts an integer to its string representation, and the ~ oper-
ator which concatenates two strings.

let to_str e =

let rec str_helper e top_level =

in

str_helper e true;;

Scratch space to work out your answers:

2. [20 points] You will use fold_left to write a function average_if : (int -> bool) -> int list -> int.
Given a “tester” function f and a list 1 of integers, average_if f 1 returns the average of all integers in 1
for which f returns true, or 0 if £ returns false for all integers in 1. For example:

let even x = x mod 2 = 0;;
val even : int -> bool <fun>

average_if even [1;2;3;4;5];; (* returns average of 2,4 -> 3x%)
- : int = 3

average_if even [1;2;3;4;5;6;7;8];; (* returns average of 2,4,6,8 -> 5 %)
- : int =5

average_if even [1;3;5;7];; (* no even numbers -> 0 *)
- :int =0

Fill in the implementation of average_if below. Recall that the type of fold_left is:
fold_left: (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a

Hint: The accumulator is a pair.

let average_if f 1 =

let folding fn _____________________ e ____ =
let base = __________ _________ o _____ in
let ______________________________ = List.fold_left folding_fn base 1 in

Scratch space to work out your answers:

3.

[10 points]
a. [5 points | You will use map and fold_left to write a function length_2 : int list list -> int,

which takes a list of lists of integers, and returns the total number of integers in all the lists. For example:

length_2 [[1;2;3];[4;61];;
- :int =5

length_2 [[1;2;3];[4;6];[9;1011;;
- :int =7

length_2 [[1;[1;011;;
- :int =0
Recall that the type of fold and map are:

fold_left: (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a
map: (’a -> ’b) -> ’a list -> ’b list

You can also use the length function, which has type ’a 1list -> int.
Fill in the implementation of length_2 below.

let length 2 1 =

List.fold_left (+)

.[5 points] You will now wuse map, fold_left and length 2 to write a function

length_3 : int list list list -> int, which takes a list of lists of lists of integers (wow!), and
returns the total number of integers in all the lists. For example:

length_3 [[[1;2;3]];[[4;6];[7;811];;
- :int =7

length_3 [[[1;2;3]11;[[4;6]1;[7;8]1;[10;11111;;
- : int =9

Fill in the implementation of length_3 below.

let length 3 1 =

List.fold_left (+)

4. [10 points | For each expression below, write down the returned value (not the type).

let f1 = List.map (fun x->2*x);;

f1 [1;2;3;4]1;;

let £f2 = List.fold_left (fun x y -> (y+2)::x) [1;;

£2 [3;5;7;9];;

let £3 = List.fold_left (fun x y -> x@[3*yl) [1;;

£3 [1;3;61;5

(* This is going to get harder now... *)

let £ = List.fold_left (fun x y > y x);;

£f1 0+ 15 =) 21;

f "abc" [(7) "zzz"; (7)) "yyy"l;;

(* Ok, this one is insanely hard!!! *)

f [1;2;3] [£f1;£2;£3];;

